1
|
Schälter F, Azizov V, Frech M, Dürholz K, Schmid E, Hendel A, Sarfati I, Maeda Y, Sokolova M, Miyagawa I, Focke K, Sarter K, van Baarsen LGM, Krautwald S, Schett G, Zaiss MM. CCL19-Positive Lymph Node Stromal Cells Govern the Onset of Inflammatory Arthritis via Tropomyosin Receptor Kinase. Arthritis Rheumatol 2024; 76:857-868. [PMID: 38268500 DOI: 10.1002/art.42807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVE The study objective was to assess the role of CCL19+ lymph node stromal cells of the joint-draining popliteal lymph node (pLN) for the development of arthritis. METHODS CCL19+ lymph node stromal cells were spatiotemporally depleted for five days in the pLN before the onset of collagen-induced arthritis (CIA) using Ccl19-Cre × iDTR mice. In addition, therapeutic treatment with recombinant CCL19-immunoglobulin G (IgG), locally injected in the footpad, was used to confirm the results. RNA sequencing of lymph node stromal cells combined with T cell coculture assays using tropomyosin receptor kinase (Trk) family inhibitors together with in vivo local pLN small interfering RNA (siRNA) treatments were used to elucidate the pathway by which CCL19+ lymph node stromal cells initiate the onset of arthritis. RESULTS Spatiotemporal depletion of CCL19+ lymph node stromal cells prevented disease onset in CIA mice. These inhibitory effects could be mimicked by local CCL19-IgG treatment. The messenger RNA sequencing analyses showed that CCL19+ lymph node stromal cells down-regulated the expression of the tropomyosin receptor kinase A (TrkA) just before disease onset. Blocking TrkA in lymph node stromal cells led to increased T cell proliferation in in vitro coculture assays. Similar effects were observed with the pan-Trk inhibitor larotrectinib in cocultures of lymph node stromal cells of patients with rheumatoid arthritis and T cells. Finally, local pLN treatment with TrkA inhibitor and TrkA siRNA led to exacerbated arthritis scores. CONCLUSION CCL19+ lymph node stromal cells are crucially involved in the development of inflammatory arthritis. Therefore, targeting of CCL19+ lymph node stromal cells via TRK could provide a tool to prevent arthritis.
Collapse
Affiliation(s)
- Fabian Schälter
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Dürholz
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Schmid
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Hendel
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ilann Sarfati
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yuichi Maeda
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany, and Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Maria Sokolova
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ippei Miyagawa
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany, and The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kristin Focke
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lisa G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC and University of Amsterdam, Amsterdam, Netherlands
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, and Deutsches Zentrumlmmuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol 2020; 17:34-46. [PMID: 33219344 DOI: 10.1038/s41584-020-00528-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Nerve growth factor (NGF) is a neurotrophin that activates nociceptive neurons to transmit pain signals from the peripheral to the central nervous system and that exerts its effects on neurons by signalling through tyrosine kinase receptors. Antibodies that inhibit the function of NGF and small molecule inhibitors of NGF receptors have been developed and tested in clinical studies to evaluate the efficacy of NGF inhibition as a form of analgesia in chronic pain states including osteoarthritis and chronic low back pain. Clinical studies in individuals with painful knee and hip osteoarthritis have revealed that NGF inhibitors substantially reduce joint pain and improve function compared with NSAIDs for a duration of up to 8 weeks. However, the higher tested doses of NGF inhibitors also increased the risk of rapidly progressive osteoarthritis in a small percentage of those treated. This Review recaps the biology of NGF and the studies that have been performed to evaluate the efficacy of NGF inhibition for chronic musculoskeletal pain states. The adverse events associated with NGF inhibition and the current state of knowledge about the mechanisms involved in rapidly progressive osteoarthritis are also discussed and future studies proposed to improve understanding of this rare but serious adverse event.
Collapse
|