1
|
Aguilera A, Fuentes A, Cea M, Carracedo R, Viñuela L, Ordóñez P, López-Fabal F, Sáez E, Cebrián R, Pérez-Revilla A, Pereira S, De Salazar A, García F. Real-life validation of a sample pooling strategy for screening of hepatitis C. Clin Microbiol Infect 2023; 29:112.e1-112.e4. [PMID: 36210627 DOI: 10.1016/j.cmi.2022.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To test a real-life sample pooling screening strategy which contributes to increasing the diagnostic capacity of clinical laboratories and expanding access to massive screening of hepatitis C. METHODS After evaluating the sensitivity of the pooling strategy for seven different commercial assays which are used to determine the concentration of hepatitis C virus (HCV)-RNA in the plasma or serum, consecutive samples submitted for HCV diagnosis during the first 3 weeks of November 2021 were tested for HCV antibodies and, in parallel and in a blinded way, were pooled into 100 samples and tested for HCV-RNA. When the result was positive, a strategy to un-mask the positive(s) pool(s), which needed up to 15 total HCV-RNA tests, was used. RESULTS All platforms were able to detect the presence of HCV-RNA in a single sample from a patient with viremic HCV present in pools of up to at least 10 000 HCV-RNA-free samples. A total of 1700 samples (17 pools) were analysed, with an overall prevalence of anti-HCV and HCV-RNA of 0.24%. After pooling, we could detect all samples previously detected using standard diagnosis tests (reflex testing) with a specificity and sensitivity of 100% (CI, 99.78-100%). Given the median current prices of anti-HCV and HCV-RNA on the market in Spain as well as personnel costs, testing using the pooling strategy would have resulted in a save of 3320€. CONCLUSIONS Here, we demonstrated that by improving cost effectiveness, with no loss of sensitivity and specificity, the strategy of pooling samples may serve as an appropriate tool for use in large-scale screening of HCV.
Collapse
Affiliation(s)
- Antonio Aguilera
- Servicio de Microbiología, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain; Departamento de Microbiología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitario Ibs.Granada, Spain
| | - María Cea
- Servicio de Microbiología, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Raquel Carracedo
- Servicio de Microbiología, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitario Ibs.Granada, Spain
| | - Patricia Ordóñez
- Complejo Hospitalario Arquitecto Marcide-Profesor Novoa Santos, Ferrol, Spain
| | | | - Elena Sáez
- Laboratorio Central de la Comunidad de Madrid (URSALUD), Madrid, Spain
| | - Rubén Cebrián
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitario Ibs.Granada, Spain
| | | | - Sara Pereira
- Servicio de Microbiología, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Adolfo De Salazar
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitario Ibs.Granada, Spain; Ciber de Enfermedades Infecciosas, ISCIII, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitario Ibs.Granada, Spain; Ciber de Enfermedades Infecciosas, ISCIII, Spain.
| |
Collapse
|
2
|
Xiong W, Ding J, Zhang W, Liu A, Li Q. Nested Group Testing Procedure. COMMUNICATIONS IN MATHEMATICS AND STATISTICS 2022; 11:1-31. [PMID: 36213843 PMCID: PMC9525165 DOI: 10.1007/s40304-021-00269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/27/2021] [Accepted: 10/13/2021] [Indexed: 06/16/2023]
Abstract
We investigated the false-negative, true-negative, false-positive, and true-positive predictive values from a general group testing procedure for a heterogeneous population. We show that its false (true)-negative predictive value of a specimen is larger (smaller), and the false (true)-positive predictive value is smaller (larger) than that from individual testing procedure, where the former is in aversion. Then we propose a nested group testing procedure, and show that it can keep the sterling characteristics and also improve the false-negative predictive values for a specimen, not larger than that from individual testing. These characteristics are studied from both theoretical and numerical points of view. The nested group testing procedure is better than individual testing on both false-positive and false-negative predictive values, while retains the efficiency as a basic characteristic of a group testing procedure. Applications to Dorfman's, Halving and Sterrett procedures are discussed. Results from extensive simulation studies and an application to malaria infection in microscopy-negative Malawian women exemplify the findings.
Collapse
Affiliation(s)
- Wenjun Xiong
- School of Mathematics and Statistics, Guangxi Normal University, Guilin, 541004 People’s Republic of China
| | - Juan Ding
- Department of Information and Computing Science, College of Sciences, Hohai University, Nanjing, 210098 People’s Republic of China
| | - Wei Zhang
- LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
| | - Aiyi Liu
- Biostatisics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health, Bethesda, 20817 USA
| | - Qizhai Li
- LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
3
|
Zhong Y, Xu P, Zhong S, Ding J. A sequential decoding procedure for pooled quantitative measure. Seq Anal 2022. [DOI: 10.1080/07474946.2022.2043049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yunning Zhong
- School of Mathematics and Statistics, Fujian Normal University, Fuzhou, Fujian, China
| | - Ping Xu
- School of Mathematics and Statistics, Guangxi Normal University, Guilin, Guangxi, China
| | - Siming Zhong
- School of Mathematics and Statistics, Guangxi Normal University, Guilin, Guangxi, China
| | - Juan Ding
- School of Mathematics and Statistics, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
4
|
de Salazar A, Aguilera A, Trastoy R, Fuentes A, Alados JC, Causse M, Galán JC, Moreno A, Trigo M, Pérez-Ruiz M, Roldán C, Pena MJ, Bernal S, Serrano-Conde E, Barbeito G, Torres E, Riazzo C, Cortes-Cuevas JL, Chueca N, Coira A, Sanchez-Calvo JM, Marfil E, Becerra F, Gude MJ, Pallarés Á, Pérez Del Molino ML, García F. Sample pooling for SARS-CoV-2 RT-PCR screening. Clin Microbiol Infect 2020; 26:1687.e1-1687.e5. [PMID: 32919074 PMCID: PMC7481316 DOI: 10.1016/j.cmi.2020.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022]
Abstract
Objective To evaluate the efficacy of sample pooling compared to the individual analysis for the diagnosis of coronavirus disease 2019 (COVID-19) by using different commercial platforms for nucleic acid extraction and amplification. Methods A total of 3519 nasopharyngeal samples received at nine Spanish clinical microbiology laboratories were processed individually and in pools (342 pools of ten samples and 11 pools of nine samples) according to the existing methodology in place at each centre. Results We found that 253 pools (2519 samples) were negative and 99 pools (990 samples) were positive; with 241 positive samples (6.85%), our pooling strategy would have saved 2167 PCR tests. For 29 pools (made out of 290 samples), we found discordant results when compared to their correspondent individual samples, as follows: in 22 of 29 pools (28 samples), minor discordances were found; for seven pools (7 samples), we found major discordances. Sensitivity, specificity and positive and negative predictive values for pooling were 97.10% (95% confidence interval (CI), 94.11–98.82), 100%, 100% and 99.79% (95% CI, 99.56–99.90) respectively; accuracy was 99.80% (95% CI, 99.59–99.92), and the kappa concordant coefficient was 0.984. The dilution of samples in our pooling strategy resulted in a median loss of 2.87 (95% CI, 2.46–3.28) cycle threshold (Ct) for E gene, 3.36 (95% CI, 2.89–3.85) Ct for the RdRP gene and 2.99 (95% CI, 2.56–3.43) Ct for the N gene. Conclusions We found a high efficiency of pooling strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA testing across different RNA extraction and amplification platforms, with excellent performance in terms of sensitivity, specificity and positive and negative predictive values.
Collapse
Affiliation(s)
- Adolfo de Salazar
- Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigacion Biosanitaria Ibs.Granada, Granada, Spain
| | - Antonio Aguilera
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Rocio Trastoy
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Ana Fuentes
- Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigacion Biosanitaria Ibs.Granada, Granada, Spain
| | - Juan Carlos Alados
- Clinical Microbiology Unit, Hospital Universitario de Jerez, Cádiz, Spain
| | - Manuel Causse
- Clinical Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Juan Carlos Galán
- Clinical Microbiology Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antonio Moreno
- Clinical Microbiology Unit, Hospital Universitario Lucus Augusti de Lugo, Lugo, Spain
| | - Matilde Trigo
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Mercedes Pérez-Ruiz
- Instituto de Investigacion Biosanitaria Ibs.Granada, Granada, Spain; Clinical Microbiology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Carolina Roldán
- Clinical Microbiology Unit, Hospital Universitario de Jae, Jaen, Spain
| | - Maria José Pena
- Clinical Microbiology Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de GC, Gran Canaria, Spain
| | - Samuel Bernal
- Unit of Infectious Disease and Clinical Microbiology, Hospital Universitario de Valme, Seville, Spain
| | - Esther Serrano-Conde
- Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigacion Biosanitaria Ibs.Granada, Granada, Spain
| | - Gema Barbeito
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Eva Torres
- Clinical Microbiology Unit, Hospital Universitario de Jerez, Cádiz, Spain
| | - Cristina Riazzo
- Clinical Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | - Natalia Chueca
- Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigacion Biosanitaria Ibs.Granada, Granada, Spain
| | - Amparo Coira
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | | | - Eduardo Marfil
- Clinical Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Federico Becerra
- Clinical Microbiology Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María José Gude
- Clinical Microbiology Unit, Hospital Universitario Lucus Augusti de Lugo, Lugo, Spain
| | - Ángeles Pallarés
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - María Luisa Pérez Del Molino
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Federico García
- Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigacion Biosanitaria Ibs.Granada, Granada, Spain.
| |
Collapse
|