1
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Doppenberg JB, Nijhoff MF, Engelse MA, de Koning EJP. Clinical use of donation after circulatory death pancreas for islet transplantation. Am J Transplant 2021; 21:3077-3087. [PMID: 33565712 PMCID: PMC8518956 DOI: 10.1111/ajt.16533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 01/25/2023]
Abstract
Due to a shortage of donation after brain death (DBD) organs, donation after circulatory death (DCD) is increasingly performed. In the field of islet transplantation, there is uncertainty regarding the suitability of DCD pancreas in terms of islet yield and function after islet isolation. The aim of this study was to investigate the potential use of DCD pancreas for islet transplantation. Islet isolation procedures from 126 category 3 DCD and 258 DBD pancreas were performed in a 9-year period. Islet yield after isolation was significantly lower for DCD compared to DBD pancreas (395 515 islet equivalents [IEQ] and 480 017 IEQ, respectively; p = .003). The decrease in IEQ during 2 days of culture was not different between the two groups. Warm ischemia time was not related to DCD islet yield. In vitro insulin secretion after a glucose challenge was similar between DCD and DBD islets. After islet transplantation, DCD islet graft recipients had similar graft function (AUC C-peptide) during mixed meal tolerance tests and Igls score compared to DBD graft recipients. In conclusion, DCD islets can be considered for clinical islet transplantation.
Collapse
Affiliation(s)
- Jason B. Doppenberg
- Department of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
- Transplantation CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Michiel F. Nijhoff
- Transplantation CenterLeiden University Medical CenterLeidenthe Netherlands
- Department of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
| | - Marten A. Engelse
- Department of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
- Transplantation CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Eelco J. P. de Koning
- Department of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
- Transplantation CenterLeiden University Medical CenterLeidenthe Netherlands
- Department of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
3
|
Noguchi H. Regulation of c-Jun NH 2-Terminal Kinase for Islet Transplantation. J Clin Med 2019; 8:jcm8111763. [PMID: 31652814 PMCID: PMC6912371 DOI: 10.3390/jcm8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation has been demonstrated to provide superior glycemic control with reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However, the insulin independence rate after islet transplantation from one donor pancreas has remained low. The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss during the first hours following grafting. The reduction in islet mass during pancreas preservation, islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of the most recent contributions to the advancement of knowledge of the JNK pathway and several possibilities for the treatment of diabetes using JNK inhibitors.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
4
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Abstract
Allogeneic islet transplantation has become a viable treatment for patients with unstable type 1 diabetes; however, donor shortage and the necessity for immunosuppressive drugs are the major drawbacks of this approach. Microencapsulated porcine islet xenotransplantation could solve these drawbacks. Clinical porcine islet xenotransplantation as well as microencapsulated islet transplantation has been conducted without significant side effects. However, these transplantations are not as efficacious as allogeneic naked islet transplantation. High quality porcine islets, biocompatible capsules, and appropriate implant sites should be the key factors for improving efficacy. With improved efficacy, microencapsulated islet xenotransplantation will solve the major drawbacks associated with current islet transplantation.
Collapse
Affiliation(s)
- Masayuki Shimoda
- National Institute for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Shinichi Matsumoto
- National Center for Global Health and Medicine, Tokyo, Japan.
- Otsuka Pharmaceutical Factory Inc., Naruto, Japan.
| |
Collapse
|
6
|
Influence of the Two-Layer Preservation Method on Human Pancreatic Islet Isolation: A Meta-Analysis. Int J Artif Organs 2015; 38:117-25. [PMID: 25790972 DOI: 10.5301/ijao.5000391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 11/20/2022]
Abstract
Introduction There has been continuous debate on whether the Two-Layer Method (TLM) is superior to the University of Wisconsin solution (UW) for preserving human pancreas prior to islet isolation. The objective of the current meta-analysis is to assess which method is superior. Methods We searched electronic databases (MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials) for relevant human trials published in the English language from January 2000 to October 2013. Data on donor characteristics and islet isolation outcomes were extracted. Results 14 articles containing 18 human studies were included in this meta-analysis. In comparison to UW alone, TLM alone produced a significantly higher islet yield (weighted mean difference, 776.32; 95% confidence interval; 370.82-1181.82; P = .0002). TLM alone also yielded higher proportion of transplantable preparations (odds ratio, 1.60; 95% confidence interval; 1.15-2.23; P = .005). The following measures did not differ: islet viability (weighted mean difference, 2.10; −2.41-6.60; P = .360), purity (weighted mean difference, −0.92; −3.75-1.91; P = .520) and function assessed by measuring the stimulation index (weighted mean difference, 0.17; −0.21-0.55; P = .380). When comparing TLM following UW storage with UW alone, the results were similar to the previous ones. Conclusions This data indicates that the TLM can improve islet yield and increase the opportunities of human pancreatic islet transplantation. Therefore, the TLM should be recommended for preserving human pancreas prior to islet isolation.
Collapse
|
7
|
Implication of mitochondrial cytoprotection in human islet isolation and transplantation. Biochem Res Int 2012; 2012:395974. [PMID: 22611495 PMCID: PMC3352213 DOI: 10.1155/2012/395974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/30/2012] [Indexed: 12/23/2022] Open
Abstract
Islet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes. However, the benefits of mitoprotection in many cases are controversial and the underlying mechanisms are unclear. This article summarizes the recent progress associated with mitochondrial cytoprotection in each step of the islet isolation and transplantation process, as well as islet potency and viability assays based on the measurement of mitochondrial integrity. In addition, we briefly discuss immunosuppression side effects on islet graft function and how transplant site selection affects islet engraftment and clinical outcomes.
Collapse
|
8
|
Maillard E, Juszczak MT, Langlois A, Kleiss C, Sencier MC, Bietiger W, Sanchez-Dominguez M, Krafft MP, Johnson PRV, Pinget M, Sigrist S. Perfluorocarbon Emulsions Prevent Hypoxia of Pancreatic β-Cells. Cell Transplant 2012; 21:657-69. [DOI: 10.3727/096368911x593136] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As oxygen carriers, perfluorocarbon emulsions might be useful to decrease hypoxia of pancreatic islets before transplantation. However, their hydrophobicity prevents their homogenisation in culture medium. To increase the surface of contact between islets and Perfluorooctyl bromide (PFOB), and consequently oxygen delivery, we tested effect of a PFOB emulsion in culture medium on β-cell lines and rat pancreatic islets. RINm5F β-cell line or pancreatic rat islets were incubated for 3 days in the presence of PFOB emulsion in media (3.5% w/v). Preoxygenation of the medium was performed before culture. Cell viability was assessed by apoptotic markers (Bax and Bcl-2) and by staining (fluoresceine diacetate and propidium iodide). β-Cell functionality was determined by insulin release during a glucose stimulation test and. Hypoxia markers, HIF-1α and VEGF, were studied at days 1 and 3 using RT-PCR, Western blotting, and ELISA. PFOB emulsions preserved viability and functionality of RINm5F cells with a decrease of HIF-1α and VEGF expression. Islets viability was preserved during 3 days of culture. Secretion of VEGF was higher in untreated control (0.09 ± 0.041 μg VEGF/mg total protein) than in PFOB emulsion incubated islets (0.02 ± 0.19 μg VEGF/mg total protein, n = 4, p < 0.05) at day 1. At day 3, VEGF secretion was increased as compared to day 1 in control (0.23 ± 0.04 μg VEGF/mg total protein) but it was imbalance by the presence of PFOB emulsion (0.09 ± 0.03 μg VEGF/mg total protein, n = 5, p < 0.05). While insulin secretion was maintained in response to a glucose stimulation test until day 3 when islets were incubated in the presence of PFOB emulsion preoxygenated (0.81 ± 0.16 at day 1 vs. 0.75 ± 0.24 at day 3), the ability to secrete insulin in the presence of high glucose concentration was lost in islets controls (0.51 ± 0.18 at day 1 vs. 0.21 ± 0.13 at day 3). Atmospheric oxygen delivery by PFOB emulsion might be sufficient to decrease islets hypoxia. However, to improve islets functionality, overoxygenation is needed. Finally, maintenance of islet viability and functionality for several days after isolation could improve the outcome of islets transplantation.
Collapse
Affiliation(s)
- E. Maillard
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - M. T. Juszczak
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - A. Langlois
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | - C. Kleiss
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | - M. C. Sencier
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | - W. Bietiger
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | | | | | - P. R. V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - M. Pinget
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
- University de Strasbourg (UdS), Strasbourg, France
| | - S. Sigrist
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| |
Collapse
|
9
|
Maruyama M, Kenmochi T, Saigo K, Naotake A, Iwashita C, Otsuki K, Ito T. Results of Islet Isolation and their Relationship to the Clinical Outcome of Kidney Transplantation in Cases where Both Grafts are Harvested from the Same Non-Heart-Beating Donor. Cell Transplant 2012; 21:559-63. [DOI: 10.3727/096368911x605484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Grafts from non-heart-beating donors (NHBDs) are used because of the limited availability of heart-beating brain-dead donors. These grafts sustain ischemic damage, and the severity of this damage varies among different areas of an organ. This study determined whether the results of islet isolation were correlated with the clinical outcomes of kidney transplantations in cases where both grafts were harvested from the same NHBD. Islets we isolated from the pancreata of 23 NHBDs between February 2004 and March 2007. Forty-six kidneys were also harvested from these NHBDs. The recipients of kidney transplants were divided into the successful isolation ( n = 14) and failed isolation ( n = 32) groups depending on the results of islet isolation. The clinical outcomes of kidney transplantation were compared between the recipients in these two groups. The immediate graft function rate and the 1-year graft survival rate after kidney transplantation in both groups were similar. Hemodialysis after transplantation was required for 6.0 days (SD, 5.2 days) in the successful isolation group and for 12.7 days (13.1 days) in the failed isolation group ( p < 0.05). The serum creatinine concentrations at 1, 3, 6, and 12 months after transplantation were elevated in the failed isolation group ( p < 0.05). The islet yield was inversely correlated with the requirement of hemodialysis (days) and the serum creatinine level at 1 month after transplantation. However, hemodialysis was required for only 7 days in the recipients of six kidneys that were obtained from NHBDs from whom <40,000 IEQ were obtained (extreme failure of islet isolation). The results of islet isolation were found to correlate with the kidney function after transplantation when both grafts are harvested from the same NHBD. However, the marginal conditions of NHBDs affect the results of islet isolation more than they do the posttransplantation kidney function.
Collapse
Affiliation(s)
| | - Takashi Kenmochi
- Department of Surgery, Chiba-East National Hospital, Chiba City, Japan
| | - Kenichi Saigo
- Department of Surgery, Chiba-East National Hospital, Chiba City, Japan
| | - Akutsu Naotake
- Department of Surgery, Chiba-East National Hospital, Chiba City, Japan
| | - Chikara Iwashita
- Department of Surgery, Chiba-East National Hospital, Chiba City, Japan
| | - Kazunori Otsuki
- Department of Surgery, Chiba-East National Hospital, Chiba City, Japan
| | - Taihei Ito
- Department of Surgery, Chiba-East National Hospital, Chiba City, Japan
| |
Collapse
|
10
|
Kuise T, Noguchi H. Recent progress in pancreatic islet transplantation. World J Transplant 2011; 1:13-8. [PMID: 24175188 PMCID: PMC3782227 DOI: 10.5500/wjt.v1.i1.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/26/2011] [Accepted: 12/19/2011] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus remains a major burden. More than 200 million people are affected worldwide, which represents 6% of the world’s population. Type 1 diabetes mellitus is an autoimmune disease, which induces the permanent destruction of the β-cells of the pancreatic islets of Langerhans. Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy, neuropathy or retinopathy, it is difficult to achieve and maintain long term in most subjects. The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficient β cells. However, islet transplantation efforts have various limitations, including the limited supply of donor pancreata, the paucity of experienced islet isolation teams, side effects of immunosuppressants and poor long term results. The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research, which has opened up several possibilities for the development of new treatments for diabetes.
Collapse
Affiliation(s)
- Takashi Kuise
- Takashi Kuise, Hirofumi Noguchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
11
|
Stiegler P, Stadlbauer-Köllner V, Sereinigg M, Hackl F, Puntschart A, Schweiger M, Prenner G, Schaffellner S, Iberer F, Lackner C, Jürgens G, Hallström S, Matzi V, Smolle-Jüttner FM, Tscheliessnigg KH. Hyperbaric oxygenation of UW solution positively impacts on the energy state of porcine pancreatic tissue*. Eur Surg 2011. [DOI: 10.1007/s10353-011-0053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Pancreatic islets from non-heart-beating donor pig: two-layer preservation method in an in vitro porcine model. Int J Artif Organs 2011; 34:519-25. [PMID: 21725934 DOI: 10.5301/ijao.2011.8465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE Pancreata from non-heart beating donors could represent an unlimited source of islets if their cell viability can be efficiently preserved during the time necessary to process the organs by the use of a better solution of preservation compared to the classic University of Wisconsin solution. The aim of this study was to determine whether it is possible to obtain functioning "alive islets" from non-heart-beating donors by comparing, on a porcine model, the classic "UW ice-store" method with a two-layer cold storage method (TLM) using oxygenated Perfluorocarbons (PFC) and UW. METHODS Whole pancreata were harvested from 20 NHBDs female pigs with similar characteristics and preserved for 4 h in UW solution (n = 10) or TLM (UW/PFC) solution (n=10). The isolated islets were then evaluated for number, viability, purity, and insulin secretion, also estimated after 8 weeks of cryopreservation. RESULTS The total number of islets obtained from isolation, and their function assayed by the insulin stimulation index, before and after cryopreservation, showed a higher value in the TLM group. No significative differences in terms of purity and viability before and after cryopreservation were found when comparing the two groups. CONCLUSIONS TLM solution for NHBDs porcine pancreata with cold ischemia time lower than 4 h offers significant advantages over UW solution storage, thereby increasing the isolation yield and isolation success rate of the pancreatic porcine islets.
Collapse
|
13
|
Pancreas procurement and preservation for islet transplantation: personal considerations. J Transplant 2011; 2011:783168. [PMID: 21918716 PMCID: PMC3171759 DOI: 10.1155/2011/783168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet transplantation is a promising option for the treatment of type 1 diabetic patients. After the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas procurement and preservation systems. Since we frequently use pancreata from donors after cardiac death in Japan,we have applied the in situ regional organ cooling system for pancreas procurement to reduce the warm ischemic time. To reduce the apoptosis of pancreatic tissue during cold preservation, we have applied the ductal injection of preservation solution. For pancreas preservation, we use modified Kyoto solution, which is advantageous at trypsin inhibition and less collagenase inhibition. In this paper, we show pancreas procurement and preservation in our group for islet transplantation.
Collapse
|
14
|
Qin H, Matsumoto S, Klintmalm GB, De Vol EB. A Meta-Analysis for Comparison of the Two-Layer and University of Wisconsin Pancreas Preservation Methods in Islet Transplantation. Cell Transplant 2011; 20:1127-37. [DOI: 10.3727/096368910x544942] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Conflicting results have been reported on the effectiveness of the two-layer method (TLM) compared with the University of Wisconsin (UW) method for preserving pancreata. The objective of this study was to compile the evidence for or against any difference in human islet yield and viability between these two. PubMed (January 2000 to May 2008) and Cochran Library searches were performed and 17 studies were included for the meta-analysis. Data on donor characteristics, preservation time, and outcomes were abstracted. Studies were subgrouped based on how TLM was used (UW + TLM or TLM alone), on mean cold ischemic time (CIT) (>20 h or <20 h), and on whether special chemical was used (yes or no). Meta-analysis of all studies and subgroups was performed and the pooled standardized mean differences (SMD) with 95% confidence intervals (CI) were reported. Overall, the use of TLM significantly increased islet yield [SMD, 0.74 (0.44–1.04)] and viability [SMD, 0.63 (0.14–1.12)]. The beneficial effects of TLM on islet yield were more evident when TLM was used following UW storage or when prolonged CIT was used. TLM used alone, shorter CIT, and no chemical use all resulted in similar islet viability between TLM and UW groups. Beneficial effects of TLM on islet viability were demonstrated only when TLM was used following UW storage, or with prolonged CIT, or with chemical use. In conclusion, the TLM was beneficial for prolonged pancreas preservation before human islet isolation; however, benefit of the TLM for short-term preservation was not clear.
Collapse
Affiliation(s)
- Huanying Qin
- Institute for Health Care Research and Improvement, Baylor Health Care System, Dallas, TX, USA
| | - Shinichi Matsumoto
- Baylor Institute for Immunology Research, Baylor Health Care System, Dallas, TX, USA
| | - Goran B. Klintmalm
- Baylor Regional Transplant Institute, Baylor Health Care System, Dallas, TX, USA
| | - Edward B. De Vol
- Institute for Health Care Research and Improvement, Baylor Health Care System, Dallas, TX, USA
| |
Collapse
|
15
|
Shin JS, Min BH, Lim JY, Kim BK, Han HJ, Yoon KH, Kim SJ, Park CG. Novel culture technique involving an histone deacetylase inhibitor reduces the marginal islet mass to correct streptozotocin-induced diabetes. Cell Transplant 2011; 20:1321-32. [PMID: 21294957 DOI: 10.3727/096368910x557146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Islet transplantation is limited by the difficulties in isolating the pancreatic islets from the cadaveric donor and maintaining them in culture. To increase islet viability and function after isolation, here we present a novel culture technique involving an histone deacetylase inhibitor (HDACi) to rejuvenate the isolated islets. Pancreatic islets were isolated from Sprague-Dawley (SD) rats and one group (FIs; freshly isolated islets) was used after overnight culture and the other group (RIs; rejuvenated islet) was subjected to rejuvenation culture procedure, which is composed of three discrete steps including degranulation, chromatin remodeling, and regranulation. FIs and RIs were compared with regard to intracellular insulin content, glucose-stimulated insulin secretion (GSIS) capacity, gene expression profile, viability and apoptosis rate under oxidative stresses, and the engraftment efficacy in the xenogeneic islet transplantation models. RIs have been shown to have 1.9 ± 0.28- and 1.7 ± 0.31-fold greater intracellular insulin content and GSIS capacity, respectively, than FIs. HDACi increased overall histone acetylation levels, with inducing increased expression of many genes including insulin 1, insulin 2, GLUT2, and Ogg1. This enhanced islet capacity resulted in more resistance against oxidative stresses and increase of the engraftment efficacy shown by reduction of twofold marginal mass of islets in xenogeneic transplantation model. In conclusion, a novel rejuvenating culture technique using HDACi as chromatin remodeling agents improved the function and viability of the freshly isolated islets, contributing to the reduction of islet mass for the control of hyperglycemia in islet transplantation.
Collapse
Affiliation(s)
- Jun-Seop Shin
- Korea Islet Transplantation Institute, Inc., Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The two-layer cold storage method (TLM) was first reported in 1988, consisting of a perfluorochemical (PFC) and initially Euro-Collins’ solution, which was later replaced by University of Wisconsin solution (UW). PFC is a biologically inert liquid and acts as an oxygen-supplying agent. A pancreas preserved using the TLM is oxygenated through the PFC and substrates are supplied by the UW solution. This allows the pancreas preserved using the TLM to generate adenosine triphosphate during storage, prolonging the preservation time. In a canine model, the TLM was shown to repair and resuscitate warm ischemically damaged pancreata during preservation, improve pancreas graft survival after transplantation, and also improve the islet yield after isolation. Clinical trials using the TLM in pancreas preservation before whole-pancreas transplantation and islet isolation have shown promising outcomes. We describe the role of the TLM in pancreas and islet transplantation.
Collapse
|
17
|
Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, Chujo D, Takita M, Kobayashi N, Onaca N, Hayashi S, Levy MF, Matsumoto S. Characterization of human pancreatic progenitor cells. Cell Transplant 2010; 19:879-86. [PMID: 20587146 DOI: 10.3727/096368910x509004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Noguchi H, Naziruddin B, Onaca N, Jackson A, Shimoda M, Ikemoto T, Fujita Y, Kobayashi N, Levy MF, Matsumoto S. Comparison of modified Celsior solution and M-kyoto solution for pancreas preservation in human islet isolation. Cell Transplant 2010; 19:751-8. [PMID: 20955657 DOI: 10.3727/096368909x508852] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kobayashi N. Spreading the wings of organ biology further. Cell Transplant 2009; 18:489-90. [PMID: 19775507 DOI: 10.1177/096368970901805-601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| |
Collapse
|