1
|
He R, Zhou J, Xu X, Wei X, Wang F, Li Y. Comparing the predictive value of quantitative magnetic resonance imaging parametric response mapping and conventional perfusion magnetic resonance imaging for clinical outcomes in patients with chronic ischemic stroke. Front Neurosci 2023; 17:1177044. [PMID: 37304032 PMCID: PMC10248057 DOI: 10.3389/fnins.2023.1177044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Predicting clinical outcomes after stroke, using magnetic resonance imaging (MRI) measures, remains a challenge. The purpose of this study was to investigate the prediction of long-term clinical outcomes after ischemic stroke using parametric response mapping (PRM) based on perfusion MRI data. Multiparametric perfusion MRI datasets from 30 patients with chronic ischemic stroke were acquired at four-time points ranging from V2 (6 weeks) to V5 (7 months) after stroke onset. All perfusion MR parameters were analyzed using the classic whole-lesion approach and voxel-based PRM at each time point. The imaging biomarkers from each acquired MRI metric that was predictive of both neurological and functional outcomes were prospectively investigated. For predicting clinical outcomes at V5, it was identified that PRMTmax-, PRMrCBV-, and PRMrCBV+ at V3 were superior to the mean values of the corresponding maps at V3. We identified correlations between the clinical prognosis after stroke and MRI parameters, emphasizing the superiority of the PRM over the whole-lesion approach for predicting long-term clinical outcomes. This indicates that complementary information for the predictive assessment of clinical outcomes can be obtained using PRM analysis. Moreover, new insights into the heterogeneity of stroke lesions revealed by PRM can help optimize the accurate stratification of patients with stroke and guide rehabilitation.
Collapse
Affiliation(s)
- Rui He
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Xu
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoer Wei
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Neurology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehua Li
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kufner A, Khalil AA, Galinovic I, Kellner E, Mekle R, Rackoll T, Boehm-Sturm P, Fiebach JB, Flöel A, Ebinger M, Endres M, Nave AH. Magnetic resonance imaging-based changes in vascular morphology and cerebral perfusion in subacute ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2617-2627. [PMID: 33866849 PMCID: PMC8504415 DOI: 10.1177/0271678x211010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
MRI-based vessel size imaging (VSI) allows for in-vivo assessment of cerebral microvasculature and perfusion. This exploratory analysis of vessel size (VS) and density (Q; both assessed via VSI) in the subacute phase of ischemic stroke involved sixty-two patients from the BAPTISe cohort ('Biomarkers And Perfusion--Training-Induced changes after Stroke') nested within a randomized controlled trial (intervention: 4-week training vs. relaxation). Relative VS, Q, cerebral blood volume (rCBV) and -flow (rCBF) were calculated for: ischemic lesion, perilesional tissue, and region corresponding to ischemic lesion on the contralateral side (mirrored lesion). Linear mixed-models detected significantly increased rVS and decreased rQ within the ischemic lesion compared to the mirrored lesion (coefficient[standard error]: 0.2[0.08] p = 0.03 and -1.0[0.3] p = 0.02, respectively); lesion rCBF and rCBV were also significantly reduced. Mixed-models did not identify time-to-MRI, nor training as modifying factors in terms of rVS or rQ up to two months post-stroke. Larger lesion VS was associated with larger lesion volumes (β 34, 95%CI 6.2-62; p = 0.02) and higher baseline NIHSS (β 3.0, 95%CI 0.49-5.3;p = 0.02), but was not predictive of six-month outcome. In summary, VSI can assess the cerebral microvasculature and tissue perfusion in the subacute phases of ischemic stroke, and may carry relevant prognostic value in terms of lesion volume and stroke severity.
Collapse
Affiliation(s)
- Anna Kufner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Ahmed A Khalil
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Neurology, Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ivana Galinovic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany
| | - Elias Kellner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf Mekle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany
| | - Torsten Rackoll
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany.,ExcellenceCluster NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases, Partner Site Rostock/Greifswald, Greifswald, Germany
| | - Martin Ebinger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Department of Neurology, Medical Park Berlin Humboldtmühle, Berlin, Germany
| | - Matthias Endres
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,ExcellenceCluster NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Alexander H Nave
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
5
|
Saito M, Ishizuka K, Hoshino T, Toi S, Kitagawa K. Leptomeningeal anastomosis and early ischemic lesions on diffusion-weighted imaging in male murine focal cerebral ischemia. J Neurosci Res 2019; 97:752-759. [PMID: 31006898 DOI: 10.1002/jnr.24403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/12/2022]
Abstract
Leptomeningeal anastomosis is a key factor for determining early ischemic lesions on diffusion-weighted imaging (DWI) in human stroke. However, few studies have validated this relationship in an experimental model. This study sought to clarify the involvement of leptomeningeal anastomosis in early ischemic lesions using a murine model. Adult male C57BL/6 mice were subjected to unilateral common carotid artery (CCA) occlusion or sham surgery. Seven or 14 days later, the middle cerebral artery (MCA) was occluded for 45 min. In the first experiment, the leptomeningeal collaterals were visualized using magnetic resonance imaging (MRI) DWI. In the second experiment, DWI was performed immediately after MCA occlusion, and the infarct sizes were determined 24 hr after recirculation. Unilateral CCA occlusion reduced the size of early ischemic lesions, enlarged the pial vessel diameter, and mitigated infarct size. The relationship between the DWI lesion size and pial vessel diameter was significant (r = 0.84, p < 0.01). The association between infarct size and DWI lesion size was also significant (r = 0.96, p < 0.01). In conclusion, involvement of the collateral circulation in early ischemic lesions was evident in the murine model. Both MRI and evaluation of leptomeningeal anastomosis could be used to develop a novel strategy targeting enhancement of the collateral circulation.
Collapse
Affiliation(s)
- Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Gong L, Zheng X, Feng L, Zhang X, Dong Q, Zhou X, Wang H, Zhang X, Shu Z, Zhao Y, Liu X. Bridging Therapy Versus Direct Mechanical Thrombectomy in Patients with Acute Ischemic Stroke due to Middle Cerebral Artery Occlusion: A Clinical- Histological Analysis of Retrieved Thrombi. Cell Transplant 2019; 28:684-690. [PMID: 30654640 PMCID: PMC6686432 DOI: 10.1177/0963689718823206] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical thrombectomy (MT) is effective in managing patients with acute ischemic stroke (AIS) caused by large-vessel occlusions and allows for valuable histological analysis of thrombi. However, whether bridging therapy (pretreatment with intravenous thrombolysis before MT) provides additional benefits in patients with middle cerebral artery (MCA) occlusion remains unclear. Therefore, this study aimed to compare the effects of direct MT and bridging therapy, and to elucidate the correlation between thrombus composition and stroke subtypes. Seventy-three patients with acute ischemic stroke who received MT, were eligible for intravenous thrombolysis, and had MCA occlusion were included. We matched 21 direct MT patients with 21 bridging therapy patients using propensity score matching and compared their 3rd-month clinical outcomes. All MCA thrombi (n = 45) were histologically analyzed, and the red blood cell (RBC) and fibrin percentages were quantified. We compared the clot composition according to stroke etiology (large-artery atherosclerosis and cardioembolism) and intravenous thrombolysis application. The baseline characteristics showed no difference between groups except for a higher atrial fibrillation rate and NIHSS score on admission in the direct MT group. We performed a supportive analysis using propensity score matching but could not find any differences in the functional outcome, mortality, and intracerebral hemorrhage. In the histological clot analysis, the cardioembolic clots without intravenous thrombolysis pretreatment had higher RBC (P = 0.042) and lower fibrin (P = 0.042) percentages than the large-artery atherosclerosis thrombi. Similar findings were observed in the thrombi treated with recombinant tissue plasminogen activator (P = 0.012). In conclusion, there was no difference in the functional outcomes between the direct MT and bridging therapy groups. However, randomized trials are needed to elucidate the high ratio of cardioembolism subtype in our group of patients. The histological MCA thrombus composition differed between cardioembolism and large-artery atherosclerosis, and this finding provides valuable information on the underlying pathogenesis and thrombus origin.
Collapse
Affiliation(s)
- Li Gong
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoran Zheng
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lijin Feng
- 2 Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiang Zhang
- 3 Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qiong Dong
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoyu Zhou
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Haichao Wang
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaojun Zhang
- 4 Department of Intervention, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongwen Shu
- 3 Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yanxin Zhao
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xueyuan Liu
- 1 Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|