1
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
2
|
Perry AG, Kahn A, Mercuri J, Rini K, Chang J, Pathak RA. Preclinical and clinical evidence for using perinatal tissue allografts in nerve sparing robot assisted radical prostatectomy to hasten recovery of functional outcomes: a literature review. BMC Urol 2024; 24:208. [PMID: 39342266 PMCID: PMC11438271 DOI: 10.1186/s12894-024-01593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Localized prostate cancer (PCa) is one of the most common malignancies in the United States. Despite continued refinement of robot assisted radical prostatectomy (RARP) surgical methods, post-surgical erectile dysfunction and urinary incontinence remain significant challenges due to iatrogenic injury of local nervous tissue. Thus, the development of therapeutic strategies, including the use of biologic adjuncts to protect and/or enhance recovery and function of nerves following RARP is of growing interest. Perinatal tissue allografts have been investigated as one such biologic adjunct to nerve sparing RARP. However, knowledge regarding their clinical efficacy in hastening return of potency and continence as well as the potential underpinning biological mechanisms involved remains understudied. Thus, the objective of this literature review was to summarize published basic science and clinical studies supporting and evaluating the use of perinatal allografts for nerve repair and their clinical efficacy as adjuncts to RARP, respectively. METHODS The literature as of May 2024 was reviewed non-systematically using PubMed, EMBASE, Scopus, and Web of Science databases. The search terms utilized were "robotic prostatectomy", "prostate cancer", "nerve sparing", "perinatal tissue", "allograft", "potency", and "continence" alone or in combination. All articles were reviewed and judged for scientific merit by authors RP and JM, only peer-reviewed studies were considered. RESULTS Eight studies of perinatal tissue allograph use in RARP were deemed worthy of inclusion in this nonsystematic review. CONCLUSIONS Incontinence and impotence remain significant comorbidities despite continued advancement in surgical technique. However, basic science research has demonstrated potential neurotrophic, anti-fibrotic, and anti-inflammatory properties of perinatal tissue allografts, and clinical studies have shown that patients who receive an intra-operative prostatic perinatal membrane wrap have faster return to potency and continence.
Collapse
Affiliation(s)
- Alan G Perry
- Department of Urology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Amanda Kahn
- Department of Urology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Jeremy Mercuri
- Samaritan Biologics, Cordova, TN, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | | | - Ram A Pathak
- Department of Urology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
3
|
Firouzeh A, Shabani I, Karimi-Soflou R, Shabani A. Osteogenic potential of adipose stem cells on hydroxyapatite-functionalized decellularized amniotic membrane. Colloids Surf B Biointerfaces 2024; 240:113974. [PMID: 38810465 DOI: 10.1016/j.colsurfb.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Amniotic membrane (AM) is an attractive source for bone tissue engineering because of its low immunogenicity, contains biomolecules and proteins, and osteogenic differentiation properties. Hydroxyapatite is widely used as bone scaffolds due to its biocompatibility and bioactivity properties. The aim of this study is to design and fabricate scaffold based on hydroxyapatite-coated decellularized amniotic membrane (DAM-HA) for bone tissue engineering purpose. So human amniotic membranes were collected from healthy donors and decellularized (DAM). Then a hydroxyapatite-coating was created by immersion in 10X SBF, under variable parameters of pH and incubation time. Hydroxyapatite-coating was characterized and the optimal sample was selected. Human adipose-derived mesenchymal stem cell behaviors were assessed on control, amniotic membrane, and coated amniotic membrane. The results of the SEM, MTT assay, and Live-Dead staining showed that DAM and DAM-HA support cell adhesion, viability and proliferation. Osteogenic differentiation was evaluated by assessment of alkaline phosphatase activity and expression of osteogenic markers. Maximum gene expression values compared to control occurred in 14 days for alkalin phosphatase, while the highest values for osteocalcin and osteopontin in 21 days. These gene expression values in DAM and DAM-HA for alkalin phosphatase is 6.41 and 8.47, for osteocalcin is 3.95 and 5.94 and for osteopontin is 5.59 and 9.9 respectively. The results of this study indicated DAM supports the survival and growth of stem cells. Also, addition of hydroxyapatite component to DAM promotes osteogenic differentiation while maintaining viability. Therefore, hydroxyapatite-coated decellularized amniotic membrane can be a promising choice for bone tissue engineering applications.
Collapse
Affiliation(s)
- Arezoo Firouzeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Amirkabir University of Technology, Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Shabani
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abou-Shanab AM, Gaser OA, Salah RA, El-Badri N. Application of the Human Amniotic Membrane as an Adjuvant Therapy for the Treatment of Hepatocellular Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:129-146. [PMID: 38036871 DOI: 10.1007/5584_2023_792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity and mortality worldwide. Current therapeutic approaches suffer significant side effects and lack of clear understanding of their molecular targets. Recent studies reported the anticancer effects, immunomodulatory properties, and antiangiogenic effects of the human amniotic membrane (hAM). hAM is a transparent protective membrane that surrounds the fetus. Preclinical studies showed pro-apoptotic and antiproliferative properties of hAM treatment on cancer cells. Herein, we present the latest findings of the application of the hAM in combating HCC tumorigenesis and the underlying molecular pathogenies and the role of transforming growth factor-beta (TGFβ), P53, WNT/beta-catenin, and PI3K/AKT pathways. The emerging clinical applications of hAM in cancer therapy provide evidence for its diverse and unique features and suitability for the management of a wide range of pathological conditions.
Collapse
Affiliation(s)
- Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ola A Gaser
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
5
|
Felfeli T, Corrin M, Papanikolaou J, Mandelcorn ED. MACULAR HOLE HYDRODISSECTION TECHNIQUE WITH HUMAN AMNIOTIC MEMBRANE FOR REPAIR OF LARGE MACULAR HOLES. Retin Cases Brief Rep 2023; 17:767-770. [PMID: 35970750 PMCID: PMC10597415 DOI: 10.1097/icb.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE To describe a combined surgical technique using the macular hole hydrodissection (MHH) with human amniotic membrane for repair of large macular holes. METHODS A step-by-step procedure and a surgical video using the combined MHH and human amniotic membrane technique are presented. DESCRIPTION AND TECHNIQUE As the first step, the MHH separates the adhesions of the macular hole to the underlying retinal pigment epithelium with a soft-tipped cannula through proportional reflux followed by gentle passive aspiration. The human amniotic membrane graft is marked to identify the nonsticky epithelial side and ensure that the stromal layer (sticky and nonshinny) is facing downward toward the retinal pigment epithelium. The graft is then tucked into the space created with MHH between the macular hole edges and the retinal pigment epithelium with closed forceps to decrease the likelihood of the graft from dislocating postoperatively. CONCLUSION The MHH in combination with the human amniotic membrane is a practical and effective technique for addressing challenging large macular holes.
Collapse
Affiliation(s)
- Tina Felfeli
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael Corrin
- Department of Biomedical Communications, University of Toronto, Toronto, Ontario, Canada
| | | | - Efrem D. Mandelcorn
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Skopinska-Wisniewska J, Michalak M, Tworkiewicz J, Tyloch D, Tuszynska M, Bajek A. Modification of the Human Amniotic Membrane Using Different Cross-Linking Agents as a Promising Tool for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6726. [PMID: 37895710 PMCID: PMC10608722 DOI: 10.3390/ma16206726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Human amniotic membranes (hAMs) obtained during cesarean sections have proven to be clinically useful as an interesting biomaterial in a wide range of tissue engineering applications such as ocular surface reconstruction, burn treatments, chronic wounds, or bedsore ulcers. It presents antimicrobial properties, promotes epithelization, reduces inflammation and angiogenesis, contains growth factors, and constitutes the reservoir of stem cells. However, variability in hAM stiffness and its fast degradation offers an explanation for the poor clinical applications and reproducibility. In addition, the preparatory method of hAM for clinical use can affect its mechanical properties, and these differences can influence its application. As a directly applied biomaterial, the hAM should be available in a ready-to-use manner in clinical settings. In the present study, we performed an analysis to improve the mechanical properties of hAM by the addition of various reagents used as protein cross-linkers: EDC/NHS, PEG-dialdehyde, PEG-NHS, dialdehyde starch, and squaric acid. The effect of hAM modification using different cross-linking agents was determined via infrared spectroscopy, thermal analyses, mechanical properties analyses, enzymatic degradation, and cytotoxicity tests. The use of PEG-dialdehyde, PEG-NHS, dialdehyde starch, and squaric acid increases the mechanical strength and elongation at the breaking point of hAM, while the addition of EDC/NHS results in material stiffening and shrinkage. Also, the thermal stability and degradation resistance were evaluated, demonstrating higher values after cross-linking. Overall, these results suggest that modification of human amniotic membrane by various reagents used as protein cross-linkers may make it easier to use hAM in clinical applications, and the presented study is a step forward in the standardization of the hAM preparation method.
Collapse
Affiliation(s)
- Joanna Skopinska-Wisniewska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, Gagarina 7 Street, 87-100 Torun, Poland
| | - Marlena Michalak
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, Gagarina 7 Street, 87-100 Torun, Poland
| | - Jakub Tworkiewicz
- Department of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Dominik Tyloch
- Department of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Marta Tuszynska
- Chair of Urology and Andrology, Department of Tissue Engineering Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland;
| | - Anna Bajek
- Chair of Urology and Andrology, Department of Tissue Engineering Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Cerverò-Varona A, Canciello A, Peserico A, Haidar Montes AA, Citeroni MR, Mauro A, Russo V, Moffa S, Pilato S, Di Giacomo S, Dufrusine B, Dainese E, Fontana A, Barboni B. Graphene oxide accelerates TGFβ-mediated epithelial-mesenchymal transition and stimulates pro-inflammatory immune response in amniotic epithelial cells. Mater Today Bio 2023; 22:100758. [PMID: 37600353 PMCID: PMC10432246 DOI: 10.1016/j.mtbio.2023.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
The application of biomaterials on immune regenerative strategies to deal with unsolved pathologies is getting attention in the field of tissue engineering. In this context, graphene oxide (GO) has been proposed as an immune-mimetic material largely used for developing stem cell-based regenerative therapies, since it has shown to influence stem cell behavior and modulate their immune response. Similarly, amniotic epithelial stem cells (AECs) are getting an increasing clinical interest as source of stem cells due to their great plasticity and immunomodulatory paracrine activities, even though GO bio-mimetic effects still remain unknown. To this aim, GO-functionalized glass coverslips have been used for AECs culture. The results demonstrated how GO-coating is able to induce and accelerate the Epithelial-Mesenchymal Transition (EMT), in a process mediated by the intracellular activation of TGFβ1-SMAD2/3 signaling pathway. The trans-differentiation towards mesenchymal phenotype provides AECs of migratory ability and substantially changes the pattern of cytokines secretion upon inflammatory stimulus. Indeed, GO-exposed AECs enhance their pro-inflammatory interleukins production thus inducing a more efficient activation of macrophages and, at the same time, by slightly reducing their inhibitory action on peripheral blood mononuclear cells proliferation. Therefore, the adhesion of AECs on GO-functionalized surfaces might contribute to the generation of a tailored microenvironment useful to face both the phases of the inflammation, thereby fostering the regenerative process.
Collapse
Affiliation(s)
- Adrian Cerverò-Varona
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Arlette Alina Haidar Montes
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Maria Rita Citeroni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Valentina Russo
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Samanta Moffa
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Stefano Di Giacomo
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Barbara Barboni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| |
Collapse
|
8
|
Di Lollo V, Canciello A, Peserico A, Orsini M, Russo V, Cerveró-Varona A, Dufrusine B, El Khatib M, Curini V, Mauro A, Berardinelli P, Tournier C, Ancora M, Cammà C, Dainese E, Mincarelli LF, Barboni B. Unveiling the immunomodulatory shift: Epithelial-mesenchymal transition Alters immune mechanisms of amniotic epithelial cells. iScience 2023; 26:107582. [PMID: 37680464 PMCID: PMC10481295 DOI: 10.1016/j.isci.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
Collapse
Affiliation(s)
- Valeria Di Lollo
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Massimiliano Orsini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Microbiology, Viale dell’Università 10, 35020 Legnaro (PD), Italy
| | - Valentina Russo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Valentina Curini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Massimo Ancora
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Luana Fiorella Mincarelli
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
9
|
Lotfi Z, Khakbiz M, Davari N, Bonakdar S, Mohammadi J, Shokrgozar MA, Derhambakhsh S. Fabrication and multiscale modeling of polycaprolactone/amniotic membrane electrospun nanofiber scaffolds for wound healing. Artif Organs 2023; 47:1267-1284. [PMID: 36869662 DOI: 10.1111/aor.14518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Enhancing the efficiency of cell-based skin tissue engineering (TE) approaches is possible via designing electrospun scaffolds possessing natural materials like amniotic membrane (AM) with wound healing characteristics. Concentrating on this aim, we fabricated innovative polycaprolactone (PCL)/AM scaffolds through the electrospinning process. METHODS The manufactured structures were characterized by employing scanning electron microscope (SEM), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, tensile testing, Bradford protein assay, etc. In addition, the mechanical properties of scaffolds were simulated by the multiscale modeling method. RESULTS As a result of conducting various tests, it was concluded that the uniformity and distribution of fibers decreased with an increase in the amniotic content. Furthermore, PCL-AM scaffolds contained amniotic and PCL characteristic bands. In the case of protein release, greater content of AM led to the release of higher amounts of collagen. Tensile testing revealed that scaffolds' ultimate strength increased when the AM content augmented. The multiscale modeling demonstrated that the scaffold had elastoplastic behavior. In order to assess cellular attachment, viability, and differentiation, human adipose-derived stem cells (ASCs) were seeded on the scaffolds. In this regard, SEM and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays showed significant cellular proliferation and viability on the proposed scaffolds, and these analyses illustrated that higher cell survival and adhesion could be achieved when scaffolds possessed a larger amount of AM. After 21 days of cultivation, particular keratinocyte markers, such as keratin I and involucrin, were identified through utilizing immunofluorescence and real-time polymerase chain reaction (PCR) tests. The markers' expressions were higher in the PCL-AM scaffold with a ratio of 90:10 v v-1 compared with the PCL-epidermal growth factor (EGF) structure. Moreover, the presence of AM in the scaffolds resulted in the keratinogenic differentiation of ASCs even without employing EGF. Consequently, this state-of-the-art experiment suggests that the PCL-AM scaffold can be a promising candidate in skin bioengineering. CONCLUSION This study showed that mixing AM with PCL, a widely used polymer, in different concentrations can overcome PCL disadvantages such as high hydrophobicity and low cellular compatibility.
Collapse
Affiliation(s)
- Zahra Lotfi
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Niyousha Davari
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Sara Derhambakhsh
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Rivera-Morales P, Barnard L, Linderman W, Gill M, Diaz V. Surgical Time and Postoperative Symptoms Study in Pterygium Excision and Amniotic Membrane Graft Using Celularity Triple Layer Dehydrated Amniotic Membrane. Clin Ophthalmol 2023; 17:1967-1974. [PMID: 37457873 PMCID: PMC10349599 DOI: 10.2147/opth.s410452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose To evaluate a novel sutureless glueless technique using a triple-layer dehydrated amniotic membrane (TLDAM) for pterygia excisions in surgical time, postoperative pain, epiphora, irritation, and FBS. Methods Twenty eyes with pterygia underwent excision with mitomycin C. The conjunctival defect was closed with TLDAM placed on the dried scleral bed with the edges of the amniotic membrane tucked under the edges of the conjunctival defect. Surgical times were measured from injection of lidocaine to final placement of bandage contact lens. After a bandage contact lens was placed, the eye was patched until POD1. Patients graded self-administered questionnaires to rate pain, FBS, irritation, and epiphora on a scale of 1-5 (1-none; 5-severe) at POD1 and POW1. Results Surgical times ranged from 6:55 to 12:00, with mean of 8:29. Compared with a previous study of sutureless glueless methodology, the difference in mean surgical time was 11.9 (p < 0.0001). Mean questionnaire scores were as follows: POD1 pain 1.8, FBS 2.3, irritation 1.0, and epiphora 2.6; POW1 pain 1.5, FBS 1.6, irritation 1.6, and epiphora 1.6. Compared to previous studies, this technique showed significantly improved pain at POD1 (p=0.0086, p<0.0001, p<0.0001, p<0.0001) and POW1 (p=0.0002, p=0.0016, p<0.0001). Significant improvement in irritation and FBS was noted at POD1 and POW1. See Table 1 for full analysis. Conclusion The sutureless glueless technique using TLDAM is a safe and effective technique compared to current standard methods. There appears to be a significant benefit regarding surgical time and postoperative pain, irritation, epiphora, and FBS compared to previous studies.
Collapse
Affiliation(s)
- Paola Rivera-Morales
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Luke Barnard
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Wendy Linderman
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Mohsain Gill
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Vicente Diaz
- Department of Ophthalmology and Visual Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Das M, Sloan AJ. Stem cell sources from human biological waste material: a role for the umbilical cord and dental pulp stem cells for regenerative medicine. Hum Cell 2023:10.1007/s13577-023-00922-6. [PMID: 37273175 DOI: 10.1007/s13577-023-00922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Stem cell research with biological waste material is an area that holds promise to revolutionize treatment modalities and clinical practice. The interest in surgical remnants is increasing with time as research on human embryonic stem cells remains controversial due to legal and ethical issues. Perhaps, these restrictions are the motivation for the use of alternative mesenchymal stem cell (MSC) sources in the regenerative field. Stem cells (SCs) of Umbilical Cord (UC) and Dental Pulp (DP) have almost similar biological characteristics to other MSCs and can differentiate into a number of cell lineages with enormous potential future prospects. A concise critical observation of UC-MSCs and DP-MSCs is presented here reviewing articles from the last two decades along with other stem cell sources from different biological waste materials.
Collapse
Affiliation(s)
- Monalisa Das
- Department of Pedodontics & Preventive Dentistry, Dr. R. Ahmed Dental College and Hospital, Kolkata, India.
- , No. 2 Durganagar, Sripally, Chakdaha, Nadia, West Bengal, 741222, India.
| | - Alastair J Sloan
- Melbourne Dental School, Level 4, 720 Swanston Street, Melbourne, VIC, 3010, Australia
| |
Collapse
|
12
|
Teoh PL, Mohd Akhir H, Abdul Ajak W, Hiew VV. Human Mesenchymal Stromal Cells Derived from Perinatal Tissues: Sources, Characteristics and Isolation Methods. Malays J Med Sci 2023; 30:55-68. [PMID: 37102047 PMCID: PMC10125235 DOI: 10.21315/mjms2023.30.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/22/2022] [Indexed: 04/28/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) derived from perinatal tissues have become indispensable sources for clinical applications due to their superior properties, ease of accessibility and minimal ethical concerns. MSCs isolated from different placenta (PL) and umbilical cord (UC) compartments exhibit great potential for stem cell-based therapies. However, their biological activities could vary due to tissue origins and differences in differentiation potentials. This review provides an overview of MSCs derived from various compartments of perinatal tissues, their characteristics and current isolation methods. Factors affecting the yield and purity of MSCs are also discussed as they are important to ensure consistent and unlimited supply for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Peik Lin Teoh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | - Warda Abdul Ajak
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Vun Vun Hiew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
13
|
Anitua E, Muruzabal F, de la Fuente M, Merayo-Lloves J, Alkhraisat MH. Development of a new plasma rich in growth factors membrane with improved optical properties. Ann Anat 2023; 248:152071. [PMID: 36801366 DOI: 10.1016/j.aanat.2023.152071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of the present work was to develop a fibrin membrane using plasma rich in growth factors (PRGF) technology with improved optical properties to be used for the treatment of ocular surface diseases. BASIC PROCEDURES Blood was drawn from three healthy donors, and the volume of PRGF obtained from each donor was divided into two main groups: i) PRGF or ii) platelet-poor plasma (PPP). Each membrane was then used pure or diluted to 90 %, 80 %, 70 %, 60 % and 50 %. The transparency of each of the different membranes was evaluated. The degradation and morphological characterization of each membrane was also performed. Finally, a stability study of the different fibrin membranes was performed. MAIN FINDINGS The transmittance test showed that the fibrin membrane with the best optical characteristics was obtained after removal of platelets and dilution of fibrin to 50 % (50 % PPP). No significant differences (p > 0.05) were observed between the different membranes in the fibrin degradation test. The stability test showed that the membrane at 50 % PPP retains its optical and physical characteristics after storage at - 20 °C for 1 month compared to storage at 4 °C. PRINCIPAL CONCLUSIONS The present study describes the development and characterization of a new fibrin membrane with improved optical characteristics while maintaining mechanical and biological characteristics. The physical and mechanical properties of the newly developed membrane are preserved after storage for at least 1 month at - 20 °C.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, Biotechnology Institute (BTI), Vitoria, Spain; Research and Development Department, University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain.
| | - Francisco Muruzabal
- Regenerative Medicine Laboratory, Biotechnology Institute (BTI), Vitoria, Spain; Research and Development Department, University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - María de la Fuente
- Regenerative Medicine Laboratory, Biotechnology Institute (BTI), Vitoria, Spain; Research and Development Department, University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Jesús Merayo-Lloves
- Instituto Oftalmológico Fernández-Vega. Fundación de Investigación Oftalmológica. Universidad de Oviedo, Oviedo, Spain
| | - Mohammad H Alkhraisat
- Regenerative Medicine Laboratory, Biotechnology Institute (BTI), Vitoria, Spain; Research and Development Department, University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| |
Collapse
|
14
|
Song B, Fang L, Mao X, Ye X, Yan Z, Ma Q, Shi Z, Hu Y, Zhu Y, Cheng Y. Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway. Front Bioeng Biotechnol 2023; 10:1092543. [PMID: 36686259 PMCID: PMC9849368 DOI: 10.3389/fbioe.2022.1092543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: The repair of a diseased ureter is an urgent clinical issue that needs to be solved. A tissue-engineered scaffold for ureteral replacement is currently insufficient due to its incompetent bioactivity, especially in long-segment abnormalities. The primary reason is the failure of urothelialization on scaffolds. Methods: In this work, we investigated the ability of gelatin-grafted tubular scaffold in ureteral repairment and its related biological mechanism. We designed various porous asymmetric poly (L-lactic acid) (PLLA)/poly (L-lactide-co-e-caprolactone) (PLCL) tubes with a thermally induced phase separation (TIPS) method via a change in the ratio of solvents (named PP). To regulate the phenotype of urothelial cells and ureteral reconstruction, gelatin was grafted onto the tubular scaffold using ammonolysis and glutaraldehyde crosslinking (named PP-gel). The in vitro and in vivo experiments were performed to test the biological function and the mechanism of the scaffolds. Results and Discussion: The hydrophilicity of the scaffold significantly increased after gelatin grafting, which promoted the adhesion and proliferation of urothelial cells. Through subcutaneous implantation in rats, PP-gel scaffolds demonstrated good biocompatibility. The in vivo replacement showed that PP-gel could improve urothelium regeneration and maintain renal function after the ureter was replaced with an ∼4 cm-long PP-gel tube using New Zealand rabbits as the experimental animals. The related biologic mechanism of ureteral reconstruction was detected in detail. The gelatin-grafted scaffold upgraded the integrin α6/β4 on the urothelial cell membrane, which phosphorylates the focal adhesion kinase (FAK) and enhances urothelialization via the MAPK/Erk signaling pathway. Conclusion: All these results confirmed that the PP46-gel scaffold is a promising candidate for the constitution of an engineered ureter and to repair long-segment ureteral defects.
Collapse
Affiliation(s)
- Baiyang Song
- School of Medicine, Ningbo University, Ningbo, China,Department of Urology, Ningbo First Hospital, Ningbo, China
| | - Li Fang
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Xufeng Mao
- School of Medicine, Ningbo University, Ningbo, China
| | - Xianwang Ye
- Department of Radiology, Ningbo First Hospital, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Qi Ma
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Zewen Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiwei Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| |
Collapse
|
15
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
16
|
Enhanced Survival and Accelerated Perfusion of Skin Flap to Recipient Site Following Administration of Human Amniotic Membrane in Rat Models. J Plast Reconstr Aesthet Surg 2022; 75:4321-4327. [DOI: 10.1016/j.bjps.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022]
|
17
|
Wells HC, Sizeland KH, Kirby N, Haverkamp RG. Structure and Strength of Bovine and Equine Amniotic Membrane. BIOLOGY 2022; 11:biology11081096. [PMID: 35892952 PMCID: PMC9329871 DOI: 10.3390/biology11081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Thin, strong scaffold materials are needed for surgical applications. There is a limited selection of available materials and new materials are required. Amnionic membrane from cattle and horses were investigated for this purpose. The structure of these materials was characterized with synchrotron techniques and the strength was measured. A possible relationship between the structure and strength was identified. These amnion materials from animal sources are strong, thin, and elastic materials, although weaker than some other collagen tissues. They may be suitable for use in surgery as an alternative to material from human donors. Abstract Thin, strong scaffold materials are needed for surgical applications. New materials are required, particularly those readily available, such as from non-human sources. Bovine amniotic membrane (antepartum) and equine amniotic membrane (postpartum) were characterized with tear and tensile tests. The structural arrangement of the collagen fibrils was determined by small-angle X-ray scattering, scanning electron microscopy, and ultrasonic imaging. Bovine amnion had a thickness-normalized tear strength of 12.6 (3.8) N/mm, while equine amnion was 14.8 (5.3) N/mm. SAXS analysis of the collagen fibril arrangement yielded an orientation index of 0.587 (0.06) and 0.681 (0.05) for bovine and equine, respectively. This may indicate a relationship between more highly aligned collagen fibrils and greater strength, as seen in other materials. Amnion from bovine or equine sources are strong, thin, elastic materials, although weaker than other collagen tissue materials commonly used, that may find application in surgery as an alternative to material from human donors.
Collapse
Affiliation(s)
- Hannah C. Wells
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Katie H. Sizeland
- ANSTO, Lucas Heights, NSW 2234, Australia;
- ANSTO, Clayton, VIC 3168, Australia;
| | | | - Richard G. Haverkamp
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
- Correspondence:
| |
Collapse
|
18
|
Majidnia E, Ahmadian M, Salehi H, Amirpour N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Sci Rep 2022; 12:6469. [PMID: 35440610 PMCID: PMC9018818 DOI: 10.1038/s41598-022-09957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
The common retinal diseases are age-related macular degeneration (AMD) and retinitis pigmentosa (RP). They are usually associated with the dysfunction of retinal pigment epithelial (RPE) cells and degeneration of underlying Bruch’s membrane. The RPE cell transplantation is the most promising therapeutic option to restore lost vision. This study aimed to construct an ultrathin porous fibrous film with properties similar to that of native Bruch’s membrane as carriers for the RPE cells. Human amniotic membrane powder (HAMP)/Polycaprolactone (PCL) scaffolds containing different concentrations of HAMP were fabricated by electrospinning technique. The results showed that with increasing the concentration of HAMP, the diameter of fibers increased. Moreover, hydrophilicity and degradation rate were improved from 119° to 92° and 14 to 56% after 28 days immersion in phosphate-buffered saline (PBS) solution, respectively. All scaffolds had a porosity above 85%. Proper cell adhesion was obtained one day after culture and no toxicity was observed. However, after seven days, the rate of growth and proliferation of ARPE-19 cells, a culture model of RPE, on the PCL-30HAMP scaffold (HAMP concentration in PCL 7.2% by weight) was higher compared to other scaffolds. These results indicated that PCL-30HAMP fibrous scaffold has a great potential to be used in retinal tissue engineering applications.
Collapse
Affiliation(s)
- Elahe Majidnia
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mehdi Ahmadian
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
19
|
Van Eps JL, Boada C, Scherba JC, Zavlin D, Arrighetti N, Shi A, Wang X, Tasciotti E, Buell JF, Ellsworth WA, Bonville DJ, Fernandez-Moure JS. Amniotic fluid allograft enhances the host response to ventral hernia repair using acellular dermal matrix. J Tissue Eng Regen Med 2021; 15:1092-1104. [PMID: 34599552 DOI: 10.1002/term.3255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Ventral hernia repair (VHR) with acellular dermal matrix (ADM) has high rates of recurrence that may be improved with allogeneic growth factor augmentation such as amniotic fluid allograft (AFA). We hypothesized that AFA would modulate the host response to improve ADM incorporation in VHR. Lewis rats underwent chronic VHR with porcine ADM alone or with AFA augmentation. Tissue harvested at 3, 14, or 28 days was assessed for region-specific cellularity, and a validated histomorphometric score was generated for tissue incorporation. Expression of pro-inflammatory (Nos1, Tnfα), anti-inflammatory (Arg1, Il-10, Mrc1) and tissue regeneration (Col1a1, Col3a1, Vegf, and alpha actinin-2) genes were quantified using quantitative reverse-transcription polymerase chain reaction. Amniotic fluid allograft treatment caused enhanced vascularization and cellularization translating to increased histomorphometric scores at 14 days, likely mediated by upregulation of pro-regeneration genes throughout the study period and molecular evidence of anti-inflammatory, M2-polarized macrophage phenotype. Collectively, this suggests AFA may have a therapeutic role as a VHR adjunct.
Collapse
Affiliation(s)
- Jeffrey L Van Eps
- Department of Surgery, Section of Colon & Rectal Surgery, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Christian Boada
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Houston Methodist Orthopedic and Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Dmitry Zavlin
- Department of Surgery, Plastic & Reconstructive Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Noemi Arrighetti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas, USA
| | - Aaron Shi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas, USA
| | - Xin Wang
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, Texas, USA
| | - Ennio Tasciotti
- Department of Human Sciences and Quality of Life Promotion, University San Raffaele and IRCCS San Raffaele, Rome, Italy
| | - Joseph F Buell
- Department of Surgery, Mission Health, Asheville, North Carolina, USA
| | - Warren A Ellsworth
- Department of Surgery, Plastic & Reconstructive Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Daniel J Bonville
- Department of Surgery, Division of Acute Care Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Joseph S Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute, and Critical Care Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
21
|
Jerman UD, Veranič P, Cirman T, Kreft ME. Human Amniotic Membrane Enriched with Urinary Bladder Fibroblasts Promote the Re-Epithelization of Urothelial Injury. Cell Transplant 2021; 29:963689720946668. [PMID: 32841052 PMCID: PMC7563929 DOI: 10.1177/0963689720946668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Culturing cells in three-dimensional systems that include extracellular matrix
components and different cell types mimic the native tissue and as such provide
much more representative results than conventional two-dimensional cell
cultures. In order to develop biomimetic bladder tissue in vitro, we used human
amniotic membrane (AM) extracellular matrix as a scaffold for bladder
fibroblasts (BFs) and urothelial cells. Our aims were to evaluate the
integration of BFs into the AM stroma, to assess the differentiation of the
urothelium on BFs-enriched AM scaffolds, and to evaluate the AM as a urothelial
wound dressing. First, to achieve the optimal integration of BFs into AM stroma,
different intact and de- epithelialized AM (dAM) scaffolds were tested. BFs
secreted matrix metalloproteinase (MMP)-1 and MMP-2 and integrated into the
stroma of all types of AM scaffolds. Second, to establish urothelial tissue
equivalent, urothelial cells were seeded on dAM scaffolds enriched with BFs. The
BFs in the stroma of the AM scaffolds promoted (1) the proliferation of
urothelial cells, (2) the attachment of urothelial cells on AM basal lamina with
hemidesmosomes, and (3) development of multilayered urothelium with expressed
uroplakins and well-developed cell junctions. Third, we established an ex vivo
model of the injured bladder to evaluate the dAM as a wound dressing for
urothelial full-thickness injury. dAM acted as a promising wound dressing since
it enabled rapid re-epithelization of urothelial injury and integrated into the
bladder tissue. Herein, the developed urothelial tissue equivalents enable
further mechanistic studies of bladder epithelial–mesenchymal interactions, and
they could be applied as biomimetic models for preclinical testing of newly
developed drugs. Moreover, we could hypothesize that AM may be suitable as a
dressing of the wound that occurs during transurethral resection of bladder
tumor, since it could diminish the possibility of tumor recurrence, by promoting
the rapid re-epithelization of the urothelium.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Cirman
- 86684Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Applications of Human Amniotic Membrane for Tissue Engineering. MEMBRANES 2021; 11:membranes11060387. [PMID: 34070582 PMCID: PMC8227127 DOI: 10.3390/membranes11060387] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.
Collapse
|
23
|
Evaluation of Fibroblast Viability Seeded on Acellular Human Amniotic Membrane. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5597758. [PMID: 34124249 PMCID: PMC8169243 DOI: 10.1155/2021/5597758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023]
Abstract
Background Investigating the viability and proliferative rates of fibroblast cells on human amniotic membrane (HAM) as a scaffold will be an important subject for further research. The aim of this study was to assess the fibroblast viability seeded on acellular HAM, since foreskin neonatal allogenic fibroblasts seeded on HAM accelerate the wound healing process. Methods Fibroblasts were retrieved from the foreskin of a genetically healthy male infant, and we exploited AM of healthy term neonates to prepare the amniotic scaffold for fibroblast transfer. After cell culture, preparation of acellular HAM, and seeding of cells on HAM based on the protocol, different methods including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI), and propidium iodide (PI) staining were employed for assessment of fibroblast viability on HAM. Results Based on the results obtained from the DAPI and PI staining, the percentage of viable cells in the former staining was clearly higher than that of the dead cells in the latter one. The results of DAPI and PI staining were in accordance with the findings of MTT assay, confirming that fibroblasts were viable and even proliferate on HAM. Conclusion Our findings showed the viability of fibroblasts seeded on the acellular HAM using MTT assay, DAPI, and PI staining; however, this study had some limitations. It would be an interesting subject for future research to compare the viability and proliferation rate of fibroblasts seeded on both cellular and acellular HAM.
Collapse
|
24
|
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, Alemzadeh-Ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Alemzadeh-Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Bury MI, Fuller NJ, Sturm RM, Rabizadeh RR, Nolan BG, Barac M, Edassery SS, Chan YY, Sharma AK. The effects of bone marrow stem and progenitor cell seeding on urinary bladder tissue regeneration. Sci Rep 2021; 11:2322. [PMID: 33504876 PMCID: PMC7840904 DOI: 10.1038/s41598-021-81939-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Complications associated with urinary bladder augmentation provide the motivation to delineate alternative bladder tissue regenerative engineering strategies. We describe the results of varying the proportion of bone marrow (BM) mesenchymal stem cells (MSCs) to CD34 + hematopoietic stem/progenitor cells (HSPCs) co-seeded onto synthetic POC [poly(1,8 octamethylene citrate)] or small intestinal submucosa (SIS) scaffolds and their contribution to bladder tissue regeneration. Human BM MSCs and CD34 + HSPCs were co-seeded onto POC or SIS scaffolds at cell ratios of 50 K CD34 + HSPCs/15 K MSCs (CD34-50/MSC15); 50 K CD34 + HSPCs/30 K MSCs (CD34-50/MSC30); 100 K CD34 + HSPCs/15 K MSCs (CD34-100/MSC15); and 100 K CD34 + HSPCs/30 K MSCs (CD34-100/MSC30), in male (M/POC; M/SIS; n = 6/cell seeded scaffold) and female (F/POC; F/SIS; n = 6/cell seeded scaffold) nude rats (n = 96 total animals). Explanted scaffold/composite augmented bladder tissue underwent quantitative morphometrics following histological staining taking into account the presence (S+) or absence (S−) of bladder stones. Urodynamic studies were also performed. Regarding regenerated tissue vascularization, an upward shift was detected for some higher seeded density groups including the CD34-100/MSC30 groups [F/POC S− CD34-100/MSC30 230.5 ± 12.4; F/POC S+ CD34-100/MSC30 245.6 ± 23.4; F/SIS S+ CD34-100/MSC30 278.1; F/SIS S− CD34-100/MSC30 187.4 ± 8.1; (vessels/mm2)]. Similarly, a potential trend toward increased levels of percent muscle (≥ 45% muscle) with higher seeding densities was observed for F/POC S− [CD34-50/MSC30 48.8 ± 2.2; CD34-100/MSC15 53.9 ± 2.8; CD34-100/MSC30 50.7 ± 1.7] and for F/SIS S− [CD34-100/MSC15 47.1 ± 1.6; CD34-100/MSC30 51.2 ± 2.3]. As a potential trend, higher MSC/CD34 + HSPCs cell seeding densities generally tended to increase levels of tissue vascularization and aided with bladder muscle growth. Data suggest that increasing cell seeding density has the potential to enhance bladder tissue regeneration in our model.
Collapse
Affiliation(s)
- Matthew I Bury
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Natalie J Fuller
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Renea M Sturm
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Bonnie G Nolan
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Milica Barac
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Sonia S Edassery
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Yvonne Y Chan
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Ann & Robert H. Lurie Children's Hospital, 155 East Chicago Ave., Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA. .,Northwestern University, Simpson Querrey Biomedical Research Institute, 303 East Superior St., Chicago, IL, 60611, USA. .,Stanley Manne Children's Research Institute, 303 East Superior St., Chicago, IL, 60611, USA. .,Department of Urology, Northwestern University Feinberg School of Medicine, 676 North St. Clair, Chicago, IL, 60611, USA. .,Center for Advanced Regenerative Engineering, Northwestern University, 633 Clark St., Evanston, IL, 60208, USA.
| |
Collapse
|
26
|
Cheng N, Velazquez N, Desroches BR, Munver R. Bioregenerative Umbilical Cord Amniotic Membrane Allograft Ureteral Wrap During Robot-Assisted Ureterolysis. J Endourol Case Rep 2021; 6:431-434. [PMID: 33457693 DOI: 10.1089/cren.2020.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Omental wrap is commonly performed after ureterolysis to prevent ureteral obstruction from recurrence of periureteral adhesions and fibrosis. We present the case of a 37-year-old Caucasian woman with a history of two cesarean sections and laparotomy for the treatment of endometriosis. She subsequently developed right flank pain caused by a right distal ureteral stricture requiring a chronic indwelling ureteral stent. Diagnostic laparoscopy revealed extrinsic compression of the ureter for which robot-assisted ureterolysis was performed. Because of inadequate omentum, we report the initial use of a cryopreserved bioregenerative umbilical cord amniotic membrane allograft to perform a ureteral wrap to promote ureteral tissue healing and serve as an adhesion barrier to prevent recurrence of the fibrosis.
Collapse
Affiliation(s)
- Nathan Cheng
- Department of Urology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Nermarie Velazquez
- Department of Urology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Bethany R Desroches
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, New Jersey, USA
| | - Ravi Munver
- Department of Urology, Hackensack University Medical Center, Hackensack, New Jersey, USA.,Department of Urology, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA.,John Theurer Cancer Center, Hackensack, New Jersey, USA
| |
Collapse
|
27
|
Etchebarne M, Fricain JC, Kerdjoudj H, Di Pietro R, Wolbank S, Gindraux F, Fenelon M. Use of Amniotic Membrane and Its Derived Products for Bone Regeneration: A Systematic Review. Front Bioeng Biotechnol 2021; 9:661332. [PMID: 34046400 PMCID: PMC8144457 DOI: 10.3389/fbioe.2021.661332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023] Open
Abstract
Thanks to their biological properties, amniotic membrane (AM), and its derivatives are considered as an attractive reservoir of stem cells and biological scaffolds for bone regenerative medicine. The objective of this systematic review was to assess the benefit of using AM and amniotic membrane-derived products for bone regeneration. An electronic search of the MEDLINE-Pubmed database and the Scopus database was carried out and the selection of articles was performed following PRISMA guidelines. This systematic review included 42 articles taking into consideration the studies in which AM, amniotic-derived epithelial cells (AECs), and amniotic mesenchymal stromal cells (AMSCs) show promising results for bone regeneration in animal models. Moreover, this review also presents some commercialized products derived from AM and discusses their application modalities. Finally, AM therapeutic benefit is highlighted in the reported clinical studies. This study is the first one to systematically review the therapeutic benefits of AM and amniotic membrane-derived products for bone defect healing. The AM is a promising alternative to the commercially available membranes used for guided bone regeneration. Additionally, AECs and AMSCs associated with an appropriate scaffold may also be ideal candidates for tissue engineering strategies applied to bone healing. Here, we summarized these findings and highlighted the relevance of these different products for bone regeneration.
Collapse
Affiliation(s)
- Marion Etchebarne
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Department of Maxillofacial Surgery, Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de Chirurgie Orale, Bordeaux, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
- Université de Reims Champagne Ardenne, UFR d'Odontologie, Reims, France
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Gabriele D'Annunzio Foundation, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de Chirurgie Orale, Bordeaux, France
- *Correspondence: Mathilde Fenelon
| |
Collapse
|
28
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
29
|
Bulut N. Can the corneal tissue be used as a wound dressing material for skin injuries? Med Hypotheses 2020; 146:110377. [PMID: 33229193 DOI: 10.1016/j.mehy.2020.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 11/15/2022]
Abstract
Currently, the application field of corneal tissue is corneal transplantation from animal to human or from human to human. Although the cornea and skin emerge from the same embriyological layer, ectoderm, and the cornea has a very high capacity, no research has been conducted to reveal the effect of the cornea in skin wound healing. There is no commercial product available in the hospital pharmacy that contains a ready-to-use, hygienic, wound dressing material manufactured from cornea for both ocular or extraocular wounds. In this article, the feasibility of corneal tissue as a candidate for disposable wound dressing material for skin injuries are examined and compared with the closest alternative, amnion membrane.
Collapse
Affiliation(s)
- N Bulut
- Beykent University, Medical Faculty, Dept of Anesthesiology (Chief), Buyukcekmece Campus: Cumhuriyet Mh. Gurpınar Cd No:3/A, Buyukcekmece, 34500 Istanbul, Turkey.
| |
Collapse
|
30
|
Sabouri L, Farzin A, Kabiri A, Milan PB, Farahbakhsh M, Mehdizadehkashi A, Kajbafzadeh A, Samadikuchaksaraei A, Yousefbeyk F, Azami M, Moghtadaei M. Mineralized Human Amniotic Membrane as a Biomimetic Scaffold for Hard Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:6285-6298. [PMID: 33449643 DOI: 10.1021/acsbiomaterials.0c00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human amniotic membrane (HAM) has been viewed as a potential regenerative material for a wide variety of injured tissues because of its collagen-rich content. High degradability of HAM limits its wide practical application in bone tissue engineering. In this study, the natural matrix of the decellularized amniotic membrane was developed by the double diffusion method. The results confirmed a reduction of the amniotic membrane's degradability because of the deposition of calcium and phosphate ions during the double diffusion process. Real-time PCR results showed a high expression of osteogenesis-related genes from adipose-derived mesenchymal stem cells (ADMSCs) cultured on the surface of the developed mineralized amniotic membrane (MAM). Further in vivo experiments were conducted using an MAM preseeded with ADMSCs and a critical-size rat calvarial defect model. Histopathological results confirmed that the MAM + cell sample has excellent potential in bone regeneration.
Collapse
Affiliation(s)
- Leila Sabouri
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Farzin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Azadeh Kabiri
- Department of Anatomical Sciences, Guilan University of Medical Science, Rasht 4188794755, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mojtaba Farahbakhsh
- Department of Medical Laboratory Sciences, Paramedical Sciences School of Langeroud, Guilan University of Medical Science, Rasht 4188794755, Iran
| | | | - Abdolmohammad Kajbafzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Fatemeh Yousefbeyk
- Department of Pharmacology, School of Pharmacy, Guilan University of Medical Sciences, Rasht 4188794755, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mehdi Moghtadaei
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Department of Orthopaedic Surgery, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran.,Bone and Joint Reconstruction Research Center, Iran University of Medical Sciences, Tehran 1157637131, Iran
| |
Collapse
|
31
|
Canciello A, Teti G, Mazzotti E, Falconi M, Russo V, Giordano A, Barboni B. Progesterone Prolongs Viability and Anti-inflammatory Functions of Explanted Preterm Ovine Amniotic Membrane. Front Bioeng Biotechnol 2020; 8:135. [PMID: 32258004 PMCID: PMC7089934 DOI: 10.3389/fbioe.2020.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Amniotic membrane (AM) is considered an important medical device with many applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. An important goal that still remains to be achieved is the identification of cultural and preservation protocols able to maintain in time the membrane morphology and the biological properties of its cells. Recently, our research group demonstrated that progesterone (P4) is crucial in preventing the loss of the epithelial phenotype of amniotic epithelial cells in vitro. Followed by this premise, it has been evaluated whether P4 may also affect AM properties in a short-term culture. Results confirm that P4 preserves AM integrity and architecture with respect to untreated AM, which showed alterations in morphology. Transmission electron microscopy (TEM) analyses demonstrate that P4 also maintains unaltered cell-cell junctions, nuclear status, and intracellular organelles. On the contrary, an untreated AM experienced an extensive cell death and a strong reduction of immunomodulatory properties, measured in terms of anti-inflammatory cytokine expression and secretion. Overall, these results could open to new strategies to ameliorate the protocols for cryopreservation and tissue culture, which represent preliminary stages of AM application in regenerative medicine.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Eleonora Mazzotti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
32
|
Liu Z, Zhu X, Zhu T, Tang R. Evaluation of a Biocomposite Mesh Modified with Decellularized Human Amniotic Membrane for Intraperitoneal Onlay Mesh Repair. ACS OMEGA 2020; 5:3550-3562. [PMID: 32118170 PMCID: PMC7045508 DOI: 10.1021/acsomega.9b03866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Various materials and approaches have been used to optimize the biocompatibility of mesh to reduce the implant-induced host response in intraperitoneal onlay mesh (IPOM) repair. Ineffective host integration, limited resistance to contamination, and untargeted administration hinder the wider application of the currently available clinical options. In this study, human amniotic membrane (HAM) was decellularized, fully characterized, and compared with porcine small intestinal submucosa (SIS) in terms of its structure, components, and bioactivity. In an in vivo study, HAM was reinforced with silk fibroin (SF) membrane, which was fabricated as a biodegradable submicroscale template by electrospinning, to construct a bilayer composite mesh. The independent SF membrane, associated with HAM and SIS, was evaluated for tissue remodeling in vitro. The HAM-SF and SIS meshes were then characterized morphologically and implanted intraperitoneally into Sprague-Dawley rats for 28 days for macroscopic investigation of their integration into the host via interactions of regulatory factors. After decellularization, HAM formed a bioagent-rich collagen-based acellular structure. HAM was superior to SIS in concurrently suppressing the expression of transforming growth factor β1 (TGF-β1) and proangiogenic proliferation. When HAM, SF, and SIS were used as regenerative scaffolds, they showed qualified biocompatibility, cell infiltration, and degradation in vitro. Comparatively, macroscopic observation after implantation indicated that HAM-SF induced less-intensive intraperitoneal adhesion and weaker inflammatory responses at the interface but greater angiogenesis in the explant than SIS. Analysis of the expression of regulatory factors showed a greater quantity of hepatocyte growth factor (HGF) in HAM, which partly inhibited the expression of TGF-β1 and promoted vascular endothelial growth factor (VEGF)-induced angiogenesis. This bioactive interaction appeared to be responsible for the better host integration, making HAM more biocompatible than SIS in IPOM repair. When combined with SF, HAM displayed similar mechanical properties to SIS. In conclusion, HAM displayed better bioactivity and biocompatibility than SIS. After its reinforcement with SF, HAM-SF is a promising biocomposite mesh for IPOM repair.
Collapse
Affiliation(s)
- Zhengni Liu
- Department
of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Xiaoqiang Zhu
- Department
of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| | - Tonghe Zhu
- Department
of Sports Medicine, Medicine and Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, No. 600 Yishan Road, Shanghai 200233, P. R. China
| | - Rui Tang
- Department
of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, 150 Ji Mo Road, Shanghai 200120, P. R. China
| |
Collapse
|
33
|
Jafari A, Niknejad H, Rezaei-Tavirani M, Zali H. The biological mechanism involved in anticancer properties of amniotic membrane. Oncol Rev 2020; 14:429. [PMID: 32153725 PMCID: PMC7036708 DOI: 10.4081/oncol.2020.429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
The main role of amniotic membrane (AM), or amnion, is to protect the fetus from drying out and create an appropriate environment for its growth. AM is also a suitable candidate for the treatment of various diseases due to its unique characteristics. In recent years, a new line of research has focused on the anticancer properties of amnion and its potential use in cancer treatment. The in vitro and in vivo studies indicate the anti-proliferative and proapoptotic activities, as well as the angioregulatory and immunomodulatory properties of the amniotic membrane. However, the exact mechanism and molecular basis of these anticancer effects of AM are not fully elucidated. This paper presents an overview of the latest findings and knowledge about the anticancer effects of AM and its underlying molecular mechanisms, which is crucial for the application of amnion in cancer therapy.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, School of Medicine,
Shahid Beheshti University of Medical Sciences, Tehran,
Iran
- Proteomics Research Center, School of Allied
Medical Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Hassan Niknejad
- Department of Tissue Engineering and Applied Cell Sciences,
School of Advanced Technologies in Medicine, Shahid Beheshti University of
Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied
Medical Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, School of Allied
Medical Sciences, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| |
Collapse
|
34
|
The current state of tissue engineering in the management of hypospadias. Nat Rev Urol 2020; 17:162-175. [DOI: 10.1038/s41585-020-0281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
|
35
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. Different Effects Of Amniotic Membrane Homogenate On The Growth Of Uropathogenic Escherichia coli, Staphylococcus aureus And Serratia marcescens. Infect Drug Resist 2019; 12:3365-3375. [PMID: 31754306 PMCID: PMC6825476 DOI: 10.2147/idr.s215006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Due to the emergence and spread of bacterial strains resistant to antibiotics, the development of new antimicrobials is imperative. The antimicrobial effect of the amniotic membrane (AM) has been explored to a limited extent so far. MATERIALS AND METHODS We collected 12 biological samples of AM homogenates and tested their antimicrobial effect on 4 pathogens, including the clinical strain of uropathogenic Escherichia coli (UPEC), the wild-type strain of Staphylococcus aureus, and the wild-type strain and a clinical strain of Serratia marcescens. To quantify the antibacterial effect of AM, we monitored the effect of AM homogenate on bacterial growth using plate count method and agar diffusion method. Additionally, minimal inhibitory concentrations (MICs) for AM homogenate dilutions were determined and S. marcescens growth in AM homogenate alone was evaluated. RESULTS Our results demonstrated that AM homogenate had a bacteriostatic effect on studied UPEC and S. aureus. Interestingly, when used in lower concentrations, the AM homogenate had a bactericidal effect on both strains. In contrast, S. marcescens was completely resistant to the growth-inhibitory substances of AM homogenate. Its growth was slightly accelerated in liquid culture medium in the presence of AM homogenate and the strain was able to grow in undiluted, 2-fold and 4-fold diluted AM homogenate. CONCLUSION Obtained results illustrated that AM homogenate could be a candidate for treatments and prevention of UPEC and S. aureus infections, but not that of S. marcescens, whose growth is enhanced by AM homogenate. Moreover, the established liquid culture medium assay can be used as a time- and cost-effective method for a personalized evaluation of drug effect on the growth of chosen bacterial strains with parallel testing of resistance or susceptibility to multiple drugs. The susceptibility of bacteria to AM homogenate in solid and liquid culture media is encouraging for its use in biomedical applications.
Collapse
Affiliation(s)
- Tina Šket
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Culenova M, Bakos D, Ziaran S, Bodnarova S, Varga I, Danisovic L. Bioengineered Scaffolds as Substitutes for Grafts for Urethra Reconstruction. MATERIALS 2019; 12:ma12203449. [PMID: 31652498 PMCID: PMC6829564 DOI: 10.3390/ma12203449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022]
Abstract
Urethral defects originating from congenital malformations, trauma, inflammation or carcinoma still pose a great challenge to modern urology. Recent therapies have failed many times and have not provided the expected results. This negatively affects patients' quality of life. By combining cells, bioactive molecules, and biomaterials, tissue engineering can provide promising treatment options. This review focused on scaffold systems for urethra reconstruction. We also discussed different technologies, such as electrospinning and 3D bioprinting which provide great possibility for the preparation of a hollow structure with well-defined architecture.
Collapse
Affiliation(s)
- Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Dusan Bakos
- International Centre for Applied Research and Sustainable Technology, Jamnickeho 19, 841 04 Bratislava, Slovakia.
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia.
| | - Simona Bodnarova
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia.
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia.
| |
Collapse
|
37
|
Borghesi J, Ferreira Lima M, Mario LC, de Almeida da Anunciação AR, Silveira Rabelo AC, Giancoli Kato Cano da Silva M, Assunpção Fernandes F, Miglino MA, Oliveira Carreira AC, Oliveira Favaron P. Canine amniotic membrane mesenchymal stromal/stem cells: Isolation, characterization and differentiation. Tissue Cell 2019; 58:99-106. [PMID: 31133253 DOI: 10.1016/j.tice.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Abstract
The amniotic membrane can be considered as one of the sources of isolation of these cells, since it is found in the fetal maternal interface and has low immunogenicity. Mesenchymal stromal/stem cells (MSCs) have not been identified in canine amniotic membrane (AMC). Therefore, our objective was to isolate, culture, characterize and differentiate cells derived from canine amniotic membrane (AMC) and to verify its immunological and tumorigenic potential. For this, 12 dogs fetuses of each gestational age 32, 43 and 55 days were used, and the isolation and culture of the AMC were performed. We observed that the cells presented fibroblastoid morphology and high confluence even after freezing. We also observed that, when induced, they were able to differentiate into osteogenic, adipogenic, and chondrogenic cells, as well as being CD34- and CD105+. Regarding the immunological markers, we found that IL-1, IL-2, IL-6, IL-10 and MHC II were not expressed, whereas MHC I was expressed. After application of AMC cells in nude mice we can verify that there was no tumor formation. Based on this, we conclude that canine amniotic membrane is a good and accessible source for obtaining MSCs of low immunogenic and tumorigenic potential for veterinary therapeutic applications.
Collapse
Affiliation(s)
- Jéssica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil.
| | | | - Lara Carolina Mario
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Fausto Assunpção Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, Internal Medicine Department, University, Sao Paulo, Sao Paulo, Brazil.
| | - Phelipe Oliveira Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| |
Collapse
|
38
|
Dhall S, Coksaygan T, Hoffman T, Moorman M, Lerch A, Kuang JQ, Sathyamoorthy M, Danilkovitch A. Viable cryopreserved umbilical tissue (vCUT) reduces post-operative adhesions in a rabbit abdominal adhesion model. Bioact Mater 2018; 4:97-106. [PMID: 30723842 PMCID: PMC6351431 DOI: 10.1016/j.bioactmat.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Post-operative adhesions, a common complication of surgery, cause pain, impair organ functionality, and often require additional surgical interventions. Control of inflammation, protection of injured tissue, and rapid tissue repair are critical for adhesion prevention. Adhesion barriers are biomaterials used to prevent adhesions by physical separation of opposing injured tissues. Current adhesion barriers have poor anti-inflammatory and tissue regenerative properties. Umbilical cord tissue (UT), a part of the placenta, is inherently soft, conforming, biocompatible, and biodegradable, with antimicrobial, anti-inflammatory, and antifibrotic properties, making it an attractive alternative to currently available adhesion barriers. While use of fresh tissue is preferable, availability and short storage time limit its clinical use. A viable cryopreserved UT (vCUT) "point of care" allograft has recently become available. vCUT retains the extracellular matrix, growth factors, and native viable cells with the added advantage of a long shelf life at -80 °C. In this study, vCUT's anti-adhesion property was evaluated in a rabbit abdominal adhesion model. The cecum was abraded on two opposing sides, and vCUT was sutured to the abdominal wall on the treatment side; whereas the contralateral side of the abdomen served as an internal untreated control. Gross and histological evaluation was performed at 7, 28, and 67 days post-surgery. No adhesions were detectable on the vCUT treated side at all time points. Histological scores for adhesion, inflammation, and fibrosis were lower on the vCUT treated side as compared to the control side. In conclusion, the data supports the use of vCUT as an adhesion barrier in surgical procedures.
Collapse
Key Words
- ANGPT1, angiopoietin-1
- ANGPT2, angiopoietin-2
- ASTM, American Society for Testing and Materials
- Adhesiolysis
- Ang, angiogenin
- C, Celsius
- CD, cluster of differentiation
- CO2, carbon dioxide
- Cryopreserved
- DAB, 3,3′-Diaminobenzidine
- DMEM, Dulbecco’s modified Eagle’s medium
- DMSO, dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate-buffered saline
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EtHd-1, ethidium homodimer-1
- FBS, fetal bovine serum
- FDA, United States Food & Drug Administration
- Fibrosis
- H&E, hematoxylin and eosin
- HGF, hepatocyte growth factor
- HRP, horseradish peroxidase
- IGFBP-1, insulin-like growth factor binding protein-1
- IL-10, interleukin 10
- IL-1RA, interleukin-1 receptor antagonist
- IV, intravenous
- IgG, immunoglobulin
- Inflammation
- MT, Masson’s trichrome
- PBS, phosphate-buffered saline
- PDGF-AA, platelet-derived growth factor AA
- PDGF-BB, platelet-derived growth factor BB
- PLGA, poly(lactic-co-glycolic acid)
- PLGF, placental growth factor
- Placental
- Post-surgical
- SD, standard deviation
- SDF-1α, stromal cell-derived factor 1 alpha
- TIMP-1, tissue inhibitor of metalloproteinases-1
- UT, umbilical cord tissue
- VEGF-D, vascular endothelial growth factor-D
- bFGF, basic fibroblast growth factor
- cAM, calcein acetoxymethyl
- cm, centimeter
- iNOS, inducible nitric oxide synthase
- mg/kg, milligram/kilogram
- mm, millimeter
- rpm, revolutions per minute
- vCUT, viable cryopreserved umbilical tissue
Collapse
Affiliation(s)
- Sandeep Dhall
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Turhan Coksaygan
- University of Maryland, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Tyler Hoffman
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Matthew Moorman
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Anne Lerch
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Jin-Qiang Kuang
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | | | - Alla Danilkovitch
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| |
Collapse
|
39
|
Dhall S, Sathyamoorthy M, Kuang JQ, Hoffman T, Moorman M, Lerch A, Jacob V, Sinclair SM, Danilkovitch A. Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage. PLoS One 2018; 13:e0204060. [PMID: 30278042 PMCID: PMC6168127 DOI: 10.1371/journal.pone.0204060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.
Collapse
Affiliation(s)
- Sandeep Dhall
- Osiris Therapeutics Inc., Columbia, MD, United States of America
- * E-mail:
| | | | - Jin-Qiang Kuang
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Tyler Hoffman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Matthew Moorman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Anne Lerch
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Vimal Jacob
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | | | | |
Collapse
|