1
|
Arki MK, Moeinabadi-Bidgoli K, Hossein-Khannazer N, Gramignoli R, Najimi M, Vosough M. Amniotic Membrane and Its Derivatives: Novel Therapeutic Modalities in Liver Disorders. Cells 2023; 12:2114. [PMID: 37626924 PMCID: PMC10453134 DOI: 10.3390/cells12162114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a vital organ responsible for metabolic and digestive functions, protein synthesis, detoxification, and numerous other necessary functions. Various acute, chronic, and neoplastic disorders affect the liver and hamper its biological functions. Most of the untreated liver diseases lead to inflammation and fibrosis which develop into cirrhosis. The human amniotic membrane (hAM), the innermost layer of the fetal placenta, is composed of multiple layers that include growth-factor rich basement membrane, epithelial and mesenchymal stromal cell layers. hAM possesses distinct beneficial anti-fibrotic, anti-inflammatory and pro-regenerative properties via the secretion of multiple potent trophic factors and/or direct differentiation into hepatic cells which place hAM-based therapies as potential therapeutic strategies for the treatment of chronic liver diseases. Decellularized hAM is also an ideal scaffold for liver tissue engineering as this biocompatible niche provides an excellent milieu for cell proliferation and hepatocytic differentiation. Therefore, the current review discusses the therapeutic potential of hAM and its derivatives in providing therapeutic solutions for liver pathologies including acute liver failure, metabolic disorders, liver fibrosis as well as its application in liver tissue engineering.
Collapse
Affiliation(s)
- Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
2
|
Tan Y, Zheng S. Clinicopathological characteristics and diagnosis of hepatic sinusoidal obstruction syndrome caused by Tusanqi - Case report and literature review. Open Med (Wars) 2023; 18:20230737. [PMID: 37333448 PMCID: PMC10276616 DOI: 10.1515/med-2023-0737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Tusanqi-induced hepatic sinusoidal obstruction syndrome (HSOS) is caused by exposure to pyrrolizidine alkaloids (PAs) and manifests as abdominal distension, liver pain, ascites, jaundice, and hepatomegaly. Pathologically, hepatic congestion and sinusoidal occlusion are observed in HSOS. We summarized the clinical characteristics of 124 patients with HSOS caused by Tusanqi in China between 1980 and 2019, along with those of 831 patients from seven English case series. The main clinical manifestations of PA-HSOS included abdominal pain, ascites, and jaundice. Common imaging features included characteristic heterogeneous density, slender hepatic veins, and other nonspecific changes. The acute stage is primarily manifested as hepatic sinus congestion and necrosis. Meanwhile, the persistence of hepatic sinus congestion and the onset of perisinusoidal fibrosis were observed during the repair stage. Finally, the persistence of hepatic sinusoidal fibrosis and resultant central hepatic vein occlusion were observed in the chronic stage. The new Nanjing standard for PA-HSOS incorporates the history of PA consumption and imaging features and eliminates weight gain and the serum total bilirubin value. Preliminary clinical validation of the Nanjing standard for PA-HSOS diagnosis revealed a sensitivity and specificity of 95.35 and 100%, respectively.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatology, Third Hospital of the Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang212003, China
| | - Sainan Zheng
- Department of Hepatology, Third Hospital of the Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang212003, China
| |
Collapse
|
3
|
Campinoti S, Almeida B, Goudarzi N, Bencina S, Grundland Freile F, McQuitty C, Natarajan D, Cox IJ, Le Guennec A, Khati V, Gaudenzi G, Gramignoli R, Urbani L. Rat liver extracellular matrix and perfusion bioreactor culture promote human amnion epithelial cell differentiation towards hepatocyte-like cells. J Tissue Eng 2023; 14:20417314231219813. [PMID: 38143931 PMCID: PMC10748678 DOI: 10.1177/20417314231219813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.
Collapse
Affiliation(s)
- Sara Campinoti
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Negin Goudarzi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Stefan Bencina
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
| | - Fabio Grundland Freile
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Department of Medical and Molecular Genetics, School of Basic and Medical Bioscience, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Claire McQuitty
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Dipa Natarajan
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - I Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, Randall Centre for Cell and Molecular Biophysics, Kings College London, London, UK
| | - Vamakshi Khati
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Giulia Gaudenzi
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
4
|
Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils the Characteristics of the Immune Microenvironment and Prognosis Signature in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6768139. [PMID: 35909899 PMCID: PMC9325591 DOI: 10.1155/2022/6768139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
The immune microenvironment is a culmination of the collaborative effort of immune cells and is important in cancer development. The underlying mechanisms of the tumor immune microenvironment in regulating prostate cancer (PRAD) are unclear. In the current study, 144 natural killer cell-related genes were identified using differential expression, single-sample gene set enrichment analysis, and weighted gene coexpression network analysis. Furthermore, VCL, ACTA2, MYL9, MYLK, MYH11, TPM1, ACTG2, TAGLN, and FLNC were selected as hub genes via the protein-protein interaction network. Based on the expression patterns of the hub genes, endothelial, epithelial, and tissue stem cells were identified as key cell subpopulations, which could regulate PRAD via immune response, extracellular signaling, and protein formation. Moreover, 27 genes were identified as prognostic signatures and used to construct the risk score model. Receiver operating characteristic curves revealed the good performance of the risk score model in both the training and testing datasets. Different chemotherapeutic responses were observed between the low- and high-risk groups. Additionally, a nomogram based on the risk score and other clinical features was established to predict the 1-, 3-, and 5-year progression-free interval of patients with PRAD. This study provides novel insights into the molecular mechanisms of the immune microenvironment and its role in the pathogenesis of PARD. The identification of key cell subpopulations has a potential therapeutic and prognostic use in PRAD.
Collapse
|
5
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
DNA Microarray-Based Global Gene Expression Profiling in Human Amniotic Epithelial Cells Predicts the Potential of Microalgae-Derived Squalene for the Nervous System and Metabolic Health. Biomedicines 2021; 10:biomedicines10010048. [PMID: 35052729 PMCID: PMC8772846 DOI: 10.3390/biomedicines10010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent years, perinatal stem cells, such as human amniotic epithelial cells (hAECs), have attracted increasing interest as a novel tool of stem cell-based high-throughput drug screening. In the present study, we investigated the bioactivities of squalene (SQ) derived from ethanol extract (99.5%) of a microalgae Aurantiochytrium Sp. (EEA-SQ) in hAECs using whole-genome DNA microarray analysis. Tissue enrichment analysis showed that the brain was the most significantly enriched tissue by the differentially expressed genes (DEGs) between EEA-SQ-treated and control hAECs. Further gene set enrichment analysis and tissue-specific functional analysis revealed biological functions related to nervous system development, neurogenesis, and neurotransmitter modulation. Several adipose tissue-specific genes and functions were also enriched. Gene-disease association analysis showed nervous system-, metabolic-, and immune-related diseases were enriched. Altogether, our study suggests the potential health benefits of microalgae-derived SQ and we would further encourage investigation in EEA-SQ and its derivatives as potential therapeutics for nervous system- and metabolism-related diseases.
Collapse
|
7
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
8
|
Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 2020; 11:439. [PMID: 33059766 PMCID: PMC7559178 DOI: 10.1186/s13287-020-01951-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissues have gained considerable attention in the field of regenerative medicine. hAECs possess embryonic stem cell-like proliferation and differentiation capabilities, and adult stem cell-like immunomodulatory properties. Compared with other types of stem cell, hAECs have special advantages, including easy isolation, plentiful numbers, the obviation of ethical debates, and non-immunogenic and non-tumorigenic properties. During the past two decades, the therapeutic potential of hAECs for treatment of various diseases has been extensively investigated. Accumulating evidence has demonstrated that hAEC transplantation helps to repair and rebuild the function of damaged tissues and organs by different molecular mechanisms. This systematic review focused on summarizing the biological characteristics of hAECs, therapeutic applications, and recent advances in treating various tissue injuries and disorders. Relevant studies published in English from 2000 to 2020 describing the role of hAECs in diseases and phenotypes were comprehensively sought out using PubMed, MEDLINE, and Google Scholar. According to the research content, we described the major hAEC characteristics, including induced differentiation plasticity, homing and differentiation, paracrine function, and immunomodulatory properties. We also summarized the current status of clinical research and discussed the prospects of hAEC-based transplantation therapies. In this review, we provide a comprehensive understanding of the therapeutic potential of hAECs, including their use for cell replacement therapy as well as secreted cytokine and exosome biotherapy. Moreover, we showed that the powerful immune-regulatory function of hAECs reveals even more possibilities for their application in the treatment of immune-related diseases. In the future, establishing the optimal culture procedure, achieving precise and accurate treatment, and enhancing the therapeutic potential by utilizing appropriate preconditioning and/or biomaterials would be new challenges for further investigation.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
9
|
Aonuma K, Ferdousi F, Xu D, Tominaga K, Isoda H. Effects of Isorhamnetin in Human Amniotic Epithelial Stem Cells in vitro and Its Cardioprotective Effects in vivo. Front Cell Dev Biol 2020; 8:578197. [PMID: 33117805 PMCID: PMC7552739 DOI: 10.3389/fcell.2020.578197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy and fibrosis are major pathophysiologic disorders that lead to serious cardiovascular diseases (CVDs), such as heart failure and arrhythmia. It is well known that transforming growth factor β (TGFβ) signaling pathways play a major role in the proliferation of cardiac hypertrophy and fibrosis, which is mainly stimulated by angiotensin II (AgII). This study aimed to investigate the cardioprotective potential of isorhamnetin (ISO) in human amniotic epithelial stem cells (hAESCs) through global gene expression analysis and to confirm its beneficial effects on cardiac hypertrophy and fibrosis in the AgII-induced in vivo model. In vitro, biological processes including TGFβ, collagen-related functions, and inflammatory processes were significantly suppressed in ISO pretreated hAESCs. In vivo, continuous AgII infusion using an osmotic pump induced significant pathological fibrosis and myocardial hypertrophy, which were remarkably suppressed by ISO pretreatment. ISO was found to reverse the enhanced TGFβ and Collagen type I alpha 1 mRNA expression induced by AgII exposure, which causes cardiovascular remodeling in ventricular tissue. These findings indicate that ISO could be a potential agent against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Kazuhiro Aonuma
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - DongZhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Morsiani C, Bacalini MG, Santoro A, Garagnani P, Collura S, D'Errico A, de Eguileor M, Grazi GL, Cescon M, Franceschi C, Capri M. The peculiar aging of human liver: A geroscience perspective within transplant context. Ageing Res Rev 2019; 51:24-34. [PMID: 30772626 DOI: 10.1016/j.arr.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
An appraisal of recent data highlighting aspects inspired by the new Geroscience perspective are here discussed. The main findings are summarized as follows: i) liver has to be considered an immunological organ, and new studies suggest a role for the recently described cells named telocytes; ii) the liver-gut axis represents a crucial connection with environment and life style habits and may influence liver diseases onset; iii) the physiological aging of liver shows relatively modest alterations. Nevertheless, several molecular changes appear to be relevant: a) an increase of microRNA-31-5p; -141-3p; -200c-3p expressions after 60 years of age; b) a remodeling of genome-wide DNA methylation profile evident until 60 years of age and then plateauing; c) changes in transcriptome including the metabolic zones of hepatocyte lobules; d) liver undergoes an accelerated aging in presence of chronic inflammation/liver diseases in a sort of continuum, largely as a consequence of unhealthy life styles and exposure to environmental noxious agents. We argue that chronic liver inflammation has all the major characteristics of "inflammaging" and likely sustains the onset and progression of liver diseases. Finally, we propose to use a combination of parameters, mostly obtained by omics such as transcriptomics and epigenomics, to evaluate in deep both the biological age of liver (in comparison with the chronological age) and the effects of donor-recipient age-mismatches in the context of liver transplant.
Collapse
Affiliation(s)
- Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | | | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Salvatore Collura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Magda de Eguileor
- DBSV-Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | | | - Matteo Cescon
- DIMEC-Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Russian Federation
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; CIG-Interdepartmental Center "Galvani", University of Bologna, Bologna, Italy; CSR-Centro di Studio per la Ricerca dell'Invecchiamento, University of Bologna, Bologna, Italy
| |
Collapse
|