1
|
Tian H, Tian F, Ma D, Xiao B, Ding Z, Zhai X, Song L, Ma C. Priming and Combined Strategies for the Application of Mesenchymal Stem Cells in Ischemic Stroke: A Promising Approach. Mol Neurobiol 2024; 61:7127-7150. [PMID: 38366307 DOI: 10.1007/s12035-024-04012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) administration and mechanical thrombectomy are the main treatments but have a narrow time window. Mesenchymal stem cells (MSCs), which are easily scalable in vitro and lack ethical concerns, possess the potential to differentiate into various types of cells and secrete a great number of growth factors for neuroprotection and regeneration. Moreover, MSCs have low immunogenicity and tumorigenic properties, showing safety and preliminary efficacy both in preclinical studies and clinical trials of IS. However, it is unlikely that MSC treatment alone will be sufficient to maximize recovery due to the low survival rate of transplanted cells and various mechanisms of ischemic brain damage in the different stages of IS. Preconditioning was used to facilitate the homing, survival, and secretion ability of the grafted MSCs in the ischemic region, while combination therapies are alternatives that can maximize the treatment effects, focusing on multiple therapeutic targets to promote stroke recovery. In this case, the combination therapy can yield a synergistic effect. In this review, we summarize the type of MSCs, preconditioning methods, and combined strategies as well as their therapeutic mechanism in the treatment of IS to accelerate the transformation from basic research to clinical application.
Collapse
Affiliation(s)
- Hao Tian
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Dong Ma
- Department of Neurosurgery, The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong, 037003, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoyan Zhai
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
- School of Basic Medicine of Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Lijuan Song
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Cungen Ma
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| |
Collapse
|
2
|
Serrenho I, Ferreira SA, Baltazar G. Preconditioning of MSCs for Acute Neurological Conditions: From Cellular to Functional Impact-A Systematic Review. Cells 2024; 13:845. [PMID: 38786067 PMCID: PMC11119364 DOI: 10.3390/cells13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
This systematic review aims to gather evidence on the mechanisms triggered by diverse preconditioning strategies for mesenchymal stem cells (MSCs) and their impact on their potential to treat ischemic and traumatic injuries affecting the nervous system. The 52 studies included in this review report nine different types of preconditioning, namely, manipulation of oxygen pressure, exposure to chemical substances, lesion mediators or inflammatory factors, usage of ultrasound, magnetic fields or biomechanical forces, and culture in scaffolds or 3D cultures. All these preconditioning strategies were reported to interfere with cellular pathways that influence MSCs' survival and migration, alter MSCs' phenotype, and modulate the secretome and proteome of these cells, among others. The effects on MSCs' phenotype and characteristics influenced MSCs' performance in models of injury, namely by increasing the homing and integration of the cells in the lesioned area and inducing the secretion of growth factors and cytokines. The administration of preconditioned MSCs promoted tissue regeneration, reduced neuroinflammation, and increased angiogenesis and myelinization in rodent models of stroke, traumatic brain injury, and spinal cord injury. These effects were also translated into improved cognitive and motor functions, suggesting an increased therapeutic potential of MSCs after preconditioning. Importantly, none of the studies reported adverse effects or less therapeutic potential with these strategies. Overall, we can conclude that all the preconditioning strategies included in this review can stimulate pathways that relate to the therapeutic effects of MSCs. Thus, it would be interesting to explore whether combining different preconditioning strategies can further boost the reparative effects of MSCs, solving some limitations of MSCs' therapy, namely donor-associated variability.
Collapse
Affiliation(s)
- Inês Serrenho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (I.S.); (S.A.F.)
| | - Susana Alves Ferreira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (I.S.); (S.A.F.)
| | - Graça Baltazar
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Wang YH, Wang ML, Tao YC, Wu DB, Chen EQ, Tang H. The high level of IL-1β in the serum of ACLF patients induces increased IL-8 expression in hUC-MSCs and reduces the efficacy of hUC-MSCs in liver failure. Stem Cell Res Ther 2023; 14:231. [PMID: 37649110 PMCID: PMC10468895 DOI: 10.1186/s13287-023-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Stem cells play a therapeutic role mainly through immunoregulation. However, the immunomodulatory function of stem cells may be affected by inflammation-related factors in patients' serum. Therefore, this study aims to investigate the possible mechanism by which acute-on-chronic liver failure (ACLF) patient serum influences the efficacy of hUC-MSCs. METHODS The serum of surviving and dead ACLF patients was collected to culture hUC-MSCs in vitro, and the hUC-MSCs cultured in the serum of ACLF patients were used to treat acute liver failure (ALF) rats. The therapeutic effect on the rats was evaluated by a survival curve, the transaminase level and liver histopathology. The expression of cytokines in hUC-MSCs was detected by Q-PCR and ELISA. RESULTS Serum pretreatment reduced the therapeutic effect of hUC-MSCs on ALF, especially pretreatment in the serum from dead ACLF patients. After hUC-MSCs were cultured in the serum of surviving or dead ACLF patients, the most differentially expressed factor was IL-8. Interfering with the expression of IL-8 in hUC-MSCs can improve the therapeutic effect of hUC-MSCs on ALF. The high level of IL-1β in the serum of dead ACLF patients causes the increased expression of IL-8 in hUC-MSCs through the activation of the NF-κB signaling pathway. Meanwhile, we found that the neutralizing IL-1β in serum from dead ACLF patients can improve the therapeutic effect of hUC-MSCs on ALF. CONCLUSION The high level of IL-1β in ACLF serum can promote the expression of IL-8 in hUC-MSCs through the NF-κB signaling pathway, thus reducing the effect of hUC-MSCs on ALF.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Tang W, Lv X, Huang J, Wang B, Lin L, Shen Y, Yao Y. Neuroprotective Effect of Stroke Pretreated Mesenchymal Stem Cells Against Cerebral Ischemia/Reperfusion Injury in Rats. World Neurosurg 2022; 165:e1-e11. [PMID: 33957285 DOI: 10.1016/j.wneu.2021.04.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been shown to enhance neurological recovery after stroke. A rat middle cerebral artery occlusion model was designed to assess neuroprotective effects of stroke pretreated MSCs on cerebral ischemia/reperfusion injury. METHODS MSCs were isolated and cultured in medium with 10% fetal bovine serum, normal control serum, or stroke serum (SS). MSCs were then injected into rats (n = 6 in each group) 1 day after middle cerebral artery occlusion, and feeding continued for 28 days. A battery of behavioral tests, 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to assess neural injury. To detect enhancement of neuronal regeneration and angiogenesis, immunofluorescence and Western blotting were performed to assess expression of trophic factors and growth factors. RESULTS After treatment, behavior of rats improved significantly. Infarction area, brain lesion, and apoptosis cells were significantly decreased in the SS-MSCs group compared with the other groups. SS-MSCs also modulated inflammation by attenuating inflammatory cytokines. Furthermore, the number of neurogenesis-positive cells and expression of trophic factors and growth factors were significantly higher in the SS-MSCs group compared with the others. MSCs cultured with fetal bovine serum and normal control serum showed differences in expression of trophic factors and growth factors, but the results were not as good as with SS-MSCs. CONCLUSIONS Administration of SS-MCSs after reperfusion led to neuroprotection by inducing the recovery process, including improving pathological changes, behavioral improvement, neurogenesis, suppression of apoptosis and inflammation, and angiogenesis.
Collapse
Affiliation(s)
- Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xin Lv
- Department of Critical Care Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jinxiu Huang
- Department of Critical Care Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Baiyong Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, China
| | - Yanmei Yao
- Department of General Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
5
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Guo Z, Pu S, Li Y, Wang X, Hu S, Zhao H, Yang C, Zhou Z. Functional characterization of CD49f + hepatic stem/progenitor cells in adult mice liver. J Mol Histol 2022; 53:239-256. [PMID: 35166962 DOI: 10.1007/s10735-022-10063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Hepatic Stem/progenitor cells (HSPCs) have gained a large amount of interest for treating acute liver disease. However, the isolation and identification of HSPCs are unclear due to the lack of cell-specific surface markers. To isolate adult HSPCs, we used cell surface-marking antibodies, including CD49f and Sca-1. Two subsets of putative HSPCs, Lin-CD45-Sca-1-CD49f+ (CD49f+) and Lin-CD45-Sca-1+CD49f- (Sca-1+) cells, were isolated from adult mice liver by flow cytometry. Robust proliferative activity and clonogenic activity were found in both CD49f+ and Sca-1+ cells through colony-forming tests and cell cycle analyses. Immunofluorescence staining revealed that CD49f+ cells expressed ALB and CK-19 while Sca-1+ cells expressed only ALB, indicating that CD49f+ cells were bipotential and capable of differentiating into hepatocyte and cholangiocyte. Consequently, PAS stain showed that differentiated CD49f+ and Sca-1+ cells synthesised glycogen, indicating they could differentiate into functional hepatocytes. mRNA expression profile indicated that both CD49f+ and Sca-1+ cells showed differential expression of genes that are associated with liver progenitor function such as Sox9 and EpCam. Moreover, two subsets of putative HSPCs were activated by DDC and we found that their abundance and proliferation increased with age. In summary, we hypothesized that CD49f+ cells were a type of potential HSPCs and may be utilised for clinical stem cell therapy.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yun Li
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaoxia Wang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Suying Hu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
8
|
Li T, Zhu G. Research progress of stem cell therapy for ischemic stroke. IBRAIN 2021; 7:245-256. [PMID: 37786797 PMCID: PMC10528988 DOI: 10.1002/j.2769-2795.2021.tb00088.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 10/04/2023]
Abstract
Ischemic stroke is a serious cerebrovascular disease with high morbidity, disability and mortality. There is no doubt that the disease has a severe impact on the physical and mental health and quality of life of patients, as well as impose a heavy burden on families and societies. Unfortunately, there has been a lack of effective treatment. This overview reviews the pathophysiology of stem cell therapy in Ischemic stroke, and discuss its effects on neurogenesis, the latest clinical trials, and advances in tracking and monitoring of endogenous and exogenous stem cells.
Collapse
Affiliation(s)
- Ting Li
- Department of Nuclear MedicineFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | | |
Collapse
|
9
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
10
|
Yang CD, Chuang SC, Cheng TL, Lee MJ, Chen HT, Lin SY, Huang HT, Ho CJ, Lin YS, Kang L, Ho ML, Chang JK, Chen CH. An Intermediate Concentration of Calcium with Antioxidant Supplement in Culture Medium Enhances Proliferation and Decreases the Aging of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22042095. [PMID: 33672524 PMCID: PMC7923799 DOI: 10.3390/ijms22042095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Human bone marrow stem cells (HBMSCs) are isolated from the bone marrow. Stem cells can self-renew and differentiate into various types of cells. They are able to regenerate kinds of tissue that are potentially used for tissue engineering. To maintain and expand these cells under culture conditions is difficult—they are easily triggered for differentiation or death. In this study, we describe a new culture formula to culture isolated HBMSCs. This new formula was modified from NCDB 153, a medium with low calcium, supplied with 5% FBS, extra growth factor added to it, and supplemented with N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate to maintain the cells in a steady stage. The cells retain these characteristics as primarily isolated HBMSCs. Moreover, our new formula keeps HBMSCs with high proliferation rate and multiple linage differentiation ability, such as osteoblastogenesis, chondrogenesis, and adipogenesis. It also retains HBMSCs with stable chromosome, DNA, telomere length, and telomerase activity, even after long-term culture. Senescence can be minimized under this new formulation and carcinogenesis of stem cells can also be prevented. These modifications greatly enhance the survival rate, growth rate, and basal characteristics of isolated HBMSCs, which will be very helpful in stem cell research.
Collapse
Affiliation(s)
- Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan;
- Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Hui-Ting Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: (J.-K.C.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (S.-C.C.); (T.-L.C.); (S.-Y.L.); (H.-T.H.); (C.-J.H.); (Y.-S.L.); (M.-L.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Correspondence: (J.-K.C.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| |
Collapse
|
11
|
Brain morphological and connectivity changes on MRI after stem cell therapy in a rat stroke model. PLoS One 2021; 16:e0246817. [PMID: 33592008 PMCID: PMC7886198 DOI: 10.1371/journal.pone.0246817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
In animal models of stroke, behavioral assessments could be complemented by a variety of neuroimaging studies to correlate them with recovery and better understand mechanisms of improvement after stem cell therapy. We evaluated morphological and connectivity changes after treatment with human mesenchymal stem cells (hMSCs) in a rat stroke model, through quantitative measurement of T2-weighted images and diffusion tensor imaging (DTI). Transient middle cerebral artery occlusion rats randomly received PBS (PBS-only), FBS cultured hMSCs (FBS-hMSCs), or stroke patients’ serum cultured hMSCs (SS-hMSCs). Functional improvement was assessed using a modified neurological severity score (mNSS). Quantitative analyses of T2-weighted ischemic lesion and ventricular volume changes were performed. Brain microstructure/connectivity changes were evaluated in the ischemic recovery area by DTI-derived microstructural indices such as relative fractional anisotropy (rFA), relative axial diffusivity (rAD), and relative radial diffusivity (rRD), and relative fiber density (rFD) analyses. According to mNSS results, the SS-hMSCs group showed the most prominent functional improvement. Infarct lesion volume of the SS-hMSCs group was significantly decreased at 2 weeks when compared to the PBS-only groups, but there were no differences between the FBS-hMSCs and SS-hMSCs groups. Brain atrophy was significantly decreased in the SS-hMSCs group compared to the other groups. In DTI, rFA and rFD values were significantly higher and rRD value was significant lower in the SS-hMSCs group and these microstructure/connectivity changes were correlated with T2-weighted morphological changes. T2-weighted volume alterations (ischemic lesion and brain atrophy), and DTI microstructural indices and rFD changes, were well matched with the results of behavioral assessment. These quantitative MRI measurements could be potential outcome predictors of functional recovery after treatment with stem cells for stroke.
Collapse
|
12
|
Chung JW, Chang WH, Bang OY, Moon GJ, Kim SJ, Kim SK, Lee JS, Sohn SI, Kim YH. Efficacy and Safety of Intravenous Mesenchymal Stem Cells for Ischemic Stroke. Neurology 2021; 96:e1012-e1023. [PMID: 33472925 DOI: 10.1212/wnl.0000000000011440] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To test whether autologous modified mesenchymal stem cells (MSCs) improve recovery in patients with chronic major stroke. METHODS In this prospective, open-label, randomized controlled trial with blinded outcome evaluation, patients with severe middle cerebral artery territory infarct within 90 days of symptom onset were assigned, in a 2:1 ratio, to receive preconditioned autologous MSC injections (MSC group) or standard treatment alone (control group). The primary outcome was the score on the modified Rankin Scale (mRS) at 3 months. The secondary outcome was to further demonstrate motor recovery. RESULTS A total of 39 and 15 patients were included in the MSC and control groups, respectively, for the final intention-to-treat analysis. Mean age of patients was 68 (range 28-83) years, and mean interval between stroke onset to randomization was 20.2 (range 5-89) days. Baseline characteristics were not different between groups. There was no significant difference between the groups in the mRS score shift at 3 months (p = 0.732). However, secondary analyses showed significant improvements in lower extremity motor function in the MSC group compared to the control group (change in the leg score of the Motricity Index, p = 0.023), which was notable among patients with low predicted recovery potential. There were no serious treatment-related adverse events. CONCLUSIONS IV application of preconditioned, autologous MSCs with autologous serum was feasible and safe in patients with chronic major stroke. MSC treatment was not associated with improvements in the 3-month mRS score, but we did observe leg motor improvement in detailed functional analyses. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that autologous MSCs do not improve 90-day outcomes in patients with chronic stroke. CLINICALTRIALSGOV IDENTIFIER NCT01716481.
Collapse
Affiliation(s)
- Jong-Won Chung
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Hyuk Chang
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Oh Young Bang
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Gyeong Joon Moon
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Suk Jae Kim
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soo-Kyoung Kim
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Soo Lee
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Il Sohn
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun-Hee Kim
- From the Department of Neurology (J.-W.C., O.Y.B., S.J.K.), Samsung Medical Center, Sungkyunkwan University; Translational and Stem Cell Research Laboratory on Stroke (J.-W.C., O.Y.B., G.J.M.) and Stem Cell and Regenerative Medicine Institute (G.J.M.), Samsung Medical Center; Department of Physical and Rehabilitation Medicine (W.H.C., Y.-H.K.), Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; School of Life Sciences (G.J.M.), BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu; Department of Neurology (S.-K.K.), Gyeongsang National University School of Medicine, Jinju; Department of Neurology (J.S.L.), Ajou University Hospital, School of Medicine, Suwon; and Department of Neurology (S.-I.S.), Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea. Dr. Moon is currently affiliated with the Stem Cell Center, Asan Institute for Life Science and the Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | |
Collapse
|
13
|
Barros I, Marcelo A, Silva TP, Barata J, Rufino-Ramos D, Pereira de Almeida L, Miranda CO. Mesenchymal Stromal Cells' Therapy for Polyglutamine Disorders: Where Do We Stand and Where Should We Go? Front Cell Neurosci 2020; 14:584277. [PMID: 33132851 PMCID: PMC7573388 DOI: 10.3389/fncel.2020.584277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach. Vast efforts have been made to develop strategies to alleviate disease symptoms. Nonetheless, there is still no therapy that can cure or effectively delay disease progression of any of these disorders. Mesenchymal stromal cells (MSC) are promising tools for the treatment of polyQ disorders, promoting protection, tissue regeneration, and/or modulation of the immune system in animal models. Accordingly, data collected from clinical trials have so far demonstrated that transplantation of MSC is safe and delays the progression of some polyQ disorders for some time. However, to achieve sustained phenotypic amelioration in clinics, several treatments may be necessary. Therefore, efforts to develop new strategies to improve MSC's therapeutic outcomes have been emerging. In this review article, we discuss the current treatments and strategies used to reduce polyQ symptoms and major pre-clinical and clinical achievements obtained with MSC transplantation as well as remaining flaws that need to be overcome. The requirement to cross the blood-brain-barrier (BBB), together with a short rate of cell engraftment in the lesioned area and low survival of MSC in a pathophysiological context upon transplantation may contribute to the transient therapeutic effects. We also review methods like pre-conditioning or genetic engineering of MSC that can be used to increase MSC survival in vivo, cellular-free approaches-i.e., MSC-conditioned medium (CM) or MSC-derived extracellular vesicles (EVs) as a way of possibly replacing the use of MSC and methods required to standardize the potential of MSC/MSC-derived products. These are fundamental questions that need to be addressed to obtain maximum MSC performance in polyQ diseases and therefore increase clinical benefits.
Collapse
Affiliation(s)
- Inês Barros
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Adriana Marcelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa P Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João Barata
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Viravector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Catarina O Miranda
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Zhang S, Lachance BB, Moiz B, Jia X. Optimizing Stem Cell Therapy after Ischemic Brain Injury. J Stroke 2020; 22:286-305. [PMID: 33053945 PMCID: PMC7568970 DOI: 10.5853/jos.2019.03048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Stem cells have been used for regenerative and therapeutic purposes in a variety of diseases. In ischemic brain injury, preclinical studies have been promising, but have failed to translate results to clinical trials. We aimed to explore the application of stem cells after ischemic brain injury by focusing on topics such as delivery routes, regeneration efficacy, adverse effects, and in vivo potential optimization. PUBMED and Web of Science were searched for the latest studies examining stem cell therapy applications in ischemic brain injury, particularly after stroke or cardiac arrest, with a focus on studies addressing delivery optimization, stem cell type comparison, or translational aspects. Other studies providing further understanding or potential contributions to ischemic brain injury treatment were also included. Multiple stem cell types have been investigated in ischemic brain injury treatment, with a strong literature base in the treatment of stroke. Studies have suggested that stem cell administration after ischemic brain injury exerts paracrine effects via growth factor release, blood-brain barrier integrity protection, and allows for exosome release for ischemic injury mitigation. To date, limited studies have investigated these therapeutic mechanisms in the setting of cardiac arrest or therapeutic hypothermia. Several delivery modalities are available, each with limitations regarding invasiveness and safety outcomes. Intranasal delivery presents a potentially improved mechanism, and hypoxic conditioning offers a potential stem cell therapy optimization strategy for ischemic brain injury. The use of stem cells to treat ischemic brain injury in clinical trials is in its early phase; however, increasing preclinical evidence suggests that stem cells can contribute to the down-regulation of inflammatory phenotypes and regeneration following injury. The safety and the tolerability profile of stem cells have been confirmed, and their potent therapeutic effects make them powerful therapeutic agents for ischemic brain injury patients.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bilal Moiz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Amann EM, Groß A, Rojewski MT, Kestler HA, Kalbitz M, Brenner RE, Huber-Lang M, Schrezenmeier H. Inflammatory response of mesenchymal stromal cells after in vivo exposure with selected trauma-related factors and polytrauma serum. PLoS One 2019; 14:e0216862. [PMID: 31086407 PMCID: PMC6516676 DOI: 10.1371/journal.pone.0216862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Polytrauma (PT) is a life-threatening disease and a major global burden of injury. Mesenchymal stromal cells (MSC) might be a therapeutic option for PT patients due to their anti-inflammatory and regenerative potential. We hypothesised that the inflammatory response of MSC is similar after exposure to selected trauma-relevant factors to sera from PT patients (PTS). Therefore, we investigated the effects of a mixture of defined factors, supposed to play a role on MSC in the early phase of PT. Additionally, in a translational approach we investigated the effect of serum from PT patients on MSC in vitro. MSC were incubated with a PT cocktail in physiological (PTCL) and supra-physiological (PTCH) concentrations or PTS. The effect on gene expression and protein secretion of MSC was analysed by RNA sequencing, ELISA and Multiplex assays of cell culture supernatant. Stimulation of MSC with PTCH, PTCL or IL1B led to significant up- or downregulation of 470, 183 and 469 genes compared to unstimulated MSC at 6 h. The intersection of differentially expressed genes in these groups was very high (92% overlap with regard to the PTCL group; treated for 6 h). Cytokine secretion profile of MSC revealed that IL1B mimics the effect of a more complex PT cocktail as well. However, there was only a minor proportion of overlapping differentially expressed genes between the MSC group stimulated with early times of PTS and the MSC group stimulated with PTCH, PTCL and IL1B. In conclusion, the effect of sera from PT patients on MSC activation cannot be simulated by the chosen trauma-relevant factors. Furthermore, we conclude that while IL1B might be useful to prime MSC prior to therapeutic application, it might not be as useful for the in vitro study of functional properties of MSC in the context of PT.
Collapse
Affiliation(s)
- Elisa Maria Amann
- Institute of Transfusion Medicine, Ulm University Medical Center, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Ulm University Medical Center, Ulm, Germany
- * E-mail:
| | - Alexander Groß
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute of Transfusion Medicine, Ulm University Medical Center, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Ulm University Medical Center, Ulm, Germany
| | | | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Ulm University Medical Center, Ulm, Germany
| | - Rolf Erwin Brenner
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University Medical Center, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
16
|
Bang OY, Kim EH. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. Front Neurol 2019; 10:211. [PMID: 30915025 PMCID: PMC6422999 DOI: 10.3389/fneur.2019.00211] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Stroke is the leading cause of physical disability among adults. Stem cells such as mesenchymal stem cells (MSCs) secrete a variety of bioactive substances, including trophic factors and extracellular vesicles (EVs), into the injured brain, which may be associated with enhanced neurogenesis, angiogenesis, and neuroprotection. EVs are circular membrane fragments (30 nm−1 μm) that are shed from the cell surface and harbor proteins, microRNAs, etc. Since 2013 when it was first reported that intravenous application of MSC-derived EVs in a stroke rat model improved neurological outcomes and increased angiogenesis and neurogenesis, many preclinical studies have shown that stem cell-derived EVs can be used in stroke therapy, as an alternative approach to stem cell infusion. Although scientific research regarding MSC-derived EV therapeutics is still at an early stage, research is rapidly increasing and is demonstrating a promising approach for patients with severe stroke. MSC therapies have already been tested in preclinical studies and clinical trials, and EV-mediated therapy has unique advantages over cell therapies in stroke patients, in terms of biodistribution (overcoming the first pass effect and crossing the blood-brain-barrier), cell-free paradigm (avoidance of cell-related problems such as tumor formation and infarcts caused by vascular occlusion), whilst offering an off-the-shelf approach for acute ischemic stroke. Recently, advances have been made in the understanding of the function and biogenesis of EVs and EVs therapeutics for various diseases. This review presents the most recent advances in MSC-derived EV therapy for stroke, focusing on the application of this strategy for stroke patients.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, South Korea.,Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
17
|
Ho YT, Shimbo T, Wijaya E, Ouchi Y, Takaki E, Yamamoto R, Kikuchi Y, Kaneda Y, Tamai K. Chromatin accessibility identifies diversity in mesenchymal stem cells from different tissue origins. Sci Rep 2018; 8:17765. [PMID: 30531792 PMCID: PMC6288149 DOI: 10.1038/s41598-018-36057-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can differentiate into tri-lineage (osteoblast, adipocyte, and chondrocyte) and suppress inflammation, are promising tools for regenerative medicine. MSCs are phenotypically diverse based on their tissue origins. However, the mechanisms underlying cell-type-specific gene expression patterns are not fully understood due to the lack of suitable strategy to identify the diversity. In this study, we investigated gene expression programs and chromatin accessibilities of MSCs by whole-transcriptome RNA-seq analysis and an assay for transposase-accessible chromatin using sequencing (ATAC-seq). We isolated MSCs from four tissues (femoral and vertebral bone marrow, adipose tissue, and lung) and analysed their molecular signatures. RNA-seq identified the expression of MSC markers and both RNA-seq and ATAC-seq successfully clustered the MSCs based on their tissue origins. Interestingly, clustering based on tissue origin was more accurate with chromatin accessibility signatures than with transcriptome profiles. Furthermore, we identified transcription factors potentially involved in establishing cell-type specific chromatin structures. Thus, epigenome analysis is useful to analyse MSC identity and can be utilized to characterize these cells for clinical use.
Collapse
Affiliation(s)
- Yen-Ting Ho
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Edward Wijaya
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Eiichi Takaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Ryoma Yamamoto
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,StemRIM Co., Ltd., Ibaraki, Osaka, Japan
| | - Yasushi Kikuchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
18
|
Moon GJ, Sung JH, Kim DH, Kim EH, Cho YH, Son JP, Cha JM, Bang OY. Application of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Stroke: Biodistribution and MicroRNA Study. Transl Stroke Res 2018; 10:509-521. [PMID: 30341718 DOI: 10.1007/s12975-018-0668-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) exert their therapeutic capability through a variety of bioactive substances, including trophic factors, microRNAs, and extracellular vesicles (EVs) in infarcted tissues. We therefore hypothesized that MSC-derived EVs (MSC-EVs) possess therapeutic molecules similar to MSCs. Moreover, given their nature as nanosized and lipid-shielded particles, the intravenous infusion of MSC-EVs would be advantageous over MSCs as a safer therapeutic approach. In this study, we investigated the biodistribution, therapeutic efficacy, and mode of action of MSC-EVs in a rat stroke model. MSC-EVs successfully stimulated neurogenesis and angiogenesis in vivo. When compared to the MSC-treated group, rats treated with MSC-EVs exhibited greater behavioral improvements than the control group (p < 0.05). Our biodistribution study using fluorescence-labeled MSC-EVs and MSCs demonstrated that the amounts of MSC-EVs in the infarcted hemisphere increased in a dose-dependent manner, and were rarely found in the lung and liver. In addition, MSC-EVs were highly inclusive of various proteins and microRNAs (miRNAs) associated with neurogenesis and/or angiogenesis compared to fibro-EVs. We further analyzed those miRNAs and found that miRNA-184 and miRNA-210 were essential for promoting neurogenesis and angiogenesis of MSC-EVs, respectively. MSC-EVs represent an ideal alternative to MSCs for stroke treatment, with similar medicinal capacity but an improved safety profile that overcomes cell-associated limitations in stem cell therapy.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Ji Hee Sung
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Dong Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Yeon Hee Cho
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong Pyo Son
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Jae Min Cha
- 3D Stem Cell Bioprocessing Laboratory, Department of Mechatronics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Oh Young Bang
- Translational and Stem Cell Research Laboratory on Stroke, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea. .,Stem Cell & Regenerative Medicine Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea. .,Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea. .,Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, 06351, South Korea.
| |
Collapse
|