1
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Wang Z, Zhang L, Yang Y, Wang Q, Qu S, Wang X, He Z, Luan Z. Oligodendrocyte Progenitor Cell Transplantation Ameliorates Preterm Infant Cerebral White Matter Injury in Rats Model. Neuropsychiatr Dis Treat 2023; 19:1935-1947. [PMID: 37719062 PMCID: PMC10503552 DOI: 10.2147/ndt.s414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
Background Cerebral white matter injury (WMI) is the most common brain injury in preterm infants, leading to motor and developmental deficits often accompanied by cognitive impairment. However, there is no effective treatment. One promising approach for treating preterm WMI is cell replacement therapy, in which lost cells can be replaced by exogenous oligodendrocyte progenitor cells (OPCs). Methods This study developed a method to differentiate human neural stem cells (hNSCs) into human OPCs (hOPCs). The preterm WMI animal model was established in rats on postnatal day 3, and OLIG2+/NG2+/PDGFRα+/O4+ hOPCs were enriched and transplanted into the corpus callosum on postnatal day 10. Then, histological analysis and electron microscopy were used to detect lesion structure; behavioral assays were performed to detect cognitive function. Results Transplanted hOPCs survived and migrated throughout the major white matter tracts. Morphological differentiation of transplanted hOPCs was observed. Histological analysis revealed structural repair of lesioned areas. Re-myelination of the axons in the corpus callosum was confirmed by electron microscopy. The Morris water maze test revealed cognitive function recovery. Conclusion Our study showed that exogenous hOPCs could differentiate into CC1+ OLS in the brain of WMI rats, improving their cognitive functions.
Collapse
Affiliation(s)
- Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Leping Zhang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
- Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Suqing Qu
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Xiaohua Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| | - Zhixu He
- Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563100, People’s Republic of China
| | - Zuo Luan
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
4
|
Ban YH, Park D, Choi EK, Kim TM, Joo SS, Kim YB. Effectiveness of Combinational Treatments for Alzheimer's Disease with Human Neural Stem Cells and Microglial Cells Over-Expressing Functional Genes. Int J Mol Sci 2023; 24:ijms24119561. [PMID: 37298510 DOI: 10.3390/ijms24119561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. In AD patients, amyloid-β (Aβ) peptide-mediated degeneration of the cholinergic system utilizing acetylcholine (ACh) for memory acquisition is observed. Since AD therapy using acetylcholinesterase (AChE) inhibitors are only palliative for memory deficits without reversing disease progress, there is a need for effective therapies, and cell-based therapeutic approaches should fulfil this requirement. We established F3.ChAT human neural stem cells (NSCs) encoding the choline acetyltransferase (ChAT) gene, an ACh-synthesizing enzyme, HMO6.NEP human microglial cells encoding the neprilysin (NEP) gene, an Aβ-degrading enzyme, and HMO6.SRA cells encoding the scavenger receptor A (SRA) gene, an Aβ-uptaking receptor. For the efficacy evaluation of the cells, first, we established an appropriate animal model based on Aβ accumulation and cognitive dysfunction. Among various AD models, intracerebroventricular (ICV) injection of ethylcholine mustard azirinium ion (AF64A) induced the most severe Aβ accumulation and memory dysfunction. Established NSCs and HMO6 cells were transplanted ICV to mice showing memory loss induced by AF64A challenge, and brain Aβ accumulation, ACh concentration and cognitive function were analyzed. All the transplanted F3.ChAT, HMO6.NEP and HMO6.SRA cells were found to survive up to 4 weeks in the mouse brain and expressed their functional genes. Combinational treatment with the NSCs (F3.ChAT) and microglial cells encoding each functional gene (HMO6.NEP or HMO6.SRA) synergistically restored the learning and memory function of AF64A-challenged mice by eliminating Aβ deposits and recovering ACh level. The cells also attenuated inflammatory astrocytic (glial fibrillary acidic protein) response by reducing Aβ accumulation. Taken together, it is expected that NSCs and microglial cells over-expressing ChAT, NEP or SRA genes could be strategies for replacement cell therapy of AD.
Collapse
Affiliation(s)
- Young-Hwan Ban
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Chungbuk, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Chungbuk, Republic of Korea
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Ye D, Qu S, Yang Y, Wang Z, Wang Q, Liu W, Zhang F, Guan Q, Wang X, Zang J, Li X, Liu H, Yao R, Feng Z, Luan Z. Intrauterine desensitization enables long term survival of human oligodendrocyte progenitor cells without immunosuppression. iScience 2023; 26:106647. [PMID: 37168574 PMCID: PMC10165029 DOI: 10.1016/j.isci.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Immune rejection can be reduced using immunosuppressants which are not viable for premature infants. However, desensitization can induce immune tolerance for premature infants because of underdeveloped immune system. The fetuses of Wistar rats at 15-17 days gestation were injected via hOPCs-1 into brain, muscles, and abdomen ex utero and then returned while the fetuses of control without injection. After 6 weeks of desensitization, the brain and muscles were transplanted with hOPCs-1, hNSCs-1, and hOPCs-2. After 10 and 34 weeks of desensitization, hOPCs-1 and hNSCs-1 in desensitized groups was higher than that in the control group while hOPCs-2 were rejected. Treg, CD4CD28, CD8CD28, and CD45RC between the desensitization and the control group differed significantly. Inflammatory cells in group with hOPCs-1 and hNSCs-1 was lower than that in the control group. hOPCs-1 can differentiate into myelin in desensitized groups. Wistar rats with desensitization developed immune tolerance to desensitized and transplanted cells.
Collapse
Affiliation(s)
- Dou Ye
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Suqing Qu
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Yinxiang Yang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Zhaoyan Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Qian Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Weipeng Liu
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Fan Zhang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qian Guan
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Xiaohua Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Jing Zang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Xin Li
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Hengtao Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100191, China
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhichun Feng
- Faculty of Pediatrics, The Seventh Medical Centre, Chinese PLA General Hospital, 100700 Beijing, China
| | - Zuo Luan
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
6
|
Berg LJ, Brüstle O. Stem cell programming - prospects for perinatal medicine. J Perinat Med 2023:jpm-2022-0575. [PMID: 36809086 DOI: 10.1515/jpm-2022-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023]
Abstract
Recreating human cell and organ systems in vitro has tremendous potential for disease modeling, drug discovery and regenerative medicine. The aim of this short overview is to recapitulate the impressive progress that has been made in the fast-developing field of cell programming during the past years, to illuminate the advantages and limitations of the various cell programming technologies for addressing nervous system disorders and to gauge their impact for perinatal medicine.
Collapse
Affiliation(s)
- Lea J Berg
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Bruschettini M, Badura A, Romantsik O. Stem cell‐based interventions for the treatment of stroke in newborn infants. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015582. [PMCID: PMC9933426 DOI: 10.1002/14651858.cd015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of stem cell‐based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem‐cell based interventions of a different type or source.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden,Cochrane SwedenLund University, Skåne University HospitalLundSweden
| | | | - Olga Romantsik
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden
| |
Collapse
|
8
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Yoon EJ, Choi Y, Kim TM, Choi EK, Kim YB, Park D. The Neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing Human Neural Stem Cells in a Stroke Model. Int J Mol Sci 2022; 23:ijms23179532. [PMID: 36076942 PMCID: PMC9455780 DOI: 10.3390/ijms23179532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen–glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.
Collapse
Affiliation(s)
- Eun-Jung Yoon
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Department of Counseling, Health, and Kinesiology, College of Education and Human Development, Texas A&M University-San Antonio, One University Way, San Antonio, TX 78224, USA
| | - Yunseo Choi
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
- Correspondence: ; Tel.: +82-43-230-3652
| |
Collapse
|
10
|
Wang LP, Geng J, Liu C, Wang Y, Zhang Z, Yang GY. Diabetes Mellitus-Related Neurobehavioral Deficits in Mice Are Associated With Oligodendrocyte Precursor Cell Dysfunction. Front Aging Neurosci 2022; 14:846739. [PMID: 35693337 PMCID: PMC9177201 DOI: 10.3389/fnagi.2022.846739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Recent clinical studies demonstrated an increase of the incidence of neurobehavioral disorders in patients with diabetes mellitus. Studies also found an association between severity of diabetes mellitus and the progression of white matter hyperintensity on magnetic resonance imaging, which conferred risk for developing cognitive impairment. Since oligodendrocyte precursor cells participated in the white matter repair and remodeling after ischemic brain injury, we explored whether hyperglycemia induced neurobehavioral deficits were associated with dysfunction of oligodendrocyte precursor cells. Adult male C57BL/6 mice (n = 40) were randomly divided into 4-week diabetes, 8-week diabetes, and control groups. Experimental diabetic mice were induced by streptozotocin injection. Learning and cognitive function, exploratory, anxiety and depression behaviors were assessed by Morris water maze, open field test, elevated plus maze, and tail suspension test, respectively. Immunofluorescence staining of neuron-glial antigen 2 and myelin basic protein were performed. Oligodendrocyte precursor cells were cultured in different glucose level to explore possible mechanism in vitro. The learning and cognitive function of 4-week and 8-week diabetic mice were attenuated compared to the control group (p < 0.05). The diabetic mice had less exploratory behavior compared to the control (p < 0.05). However, the diabetic mice were more likely to show anxiety (p < 0.05) and depression (p < 0.01) compared to the control. Further study demonstrated the number of oligodendrocyte precursor cells and the level of myelin basic protein expression were decreased in diabetic mice and the migration and survival ability were suppressed in the hyperglycemic environment in vitro (p < 0.05). Our results demonstrated that diabetes mellitus induced neurological deficits were associated with the decreased number and dysfunction of oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Li-Ping Wang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jieli Geng,
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
12
|
Li Y, Wang D, Li Z, Ouyang Z. PSB0788 ameliorates maternal inflammation-induced periventricular leukomalacia-like injury. Bioengineered 2022; 13:10224-10234. [PMID: 35436416 PMCID: PMC9161964 DOI: 10.1080/21655979.2022.2061296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies have shown that periventricular leukomalacia (PVL) is a distinctive form of cerebral white matter injury that pertains to myelination disturbances. Maternal inflammation is a main cause of white matter injury. Intrauterine inflammation cellular will be propagated to the developing brain by the entire maternal-placental-fetal axis, and triggers neural immune injury. As a low-affinity receptor, adenosine A2B receptor (A2BAR) requires high concentrations of adenosine to be significantly activated in pathological conditions. We hypothesized that in the maternal inflammation-induced PVL model, a selective A2BAR antagonist PSB0788 had the potential to prevent the injury. In this work, a total of 18 SD pregnant rats were divided into three groups, and treated with intraperitoneal injection of phosphate buffered saline (PBS), lipopolysaccharide (LPS), or LPS+PSB0788. Placental infection was determined by H&E staining and the inflammatory condition was determined by ELISA. Change of MBP, NG2 and CC-1 in the brain of the rats' offspring were detected by western blot and immunohistochemistry. Furthermore, LPS-induced maternal inflammation reduced the expression of MBP, which related to the decrease in the numbers of OPCs and mature oligodendrocytes in neonate rats. After treatment with PSB0788, the levels of MBP proteins increased in the rats' offspring, improved the remyelination. In conclusion, our study shows that the selective A2BAR antagonist PSB0788 plays an important role in promoting the normal development of OPCs in vivo by the maternal inflammation-induced PVL model. Future studies will focus on the mechanism of PSB0788 in this model.
Collapse
Affiliation(s)
- Yilu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, scDFG Guangzhou, Guangdong, China
| | - Dan Wang
- Department of clinical medicine, Bengbu Medical College, Bengbu, Anhui, China,Department of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhuoyang Li
- School of Chemistry and Chemical Engineering, South China University of Technology, scDFG Guangzhou, Guangdong, China,South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, Guangdong, China
| | - Zhi Ouyang
- South China University of Technology Hospital, South China University of Technology, Guangzhou, Guangdong, China,CONTACT Zhi Ouyang South China University of Technology Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
14
|
Wang TY, Xia FY, Gong JW, Xu XK, Lv MC, Chatoo M, Shamsi BH, Zhang MC, Liu QR, Liu TX, Zhang DD, Lu XJ, Zhao Y, Du JZ, Chen XQ. CRHR1 mediates the transcriptional expression of pituitary hormones and their receptors under hypoxia. Front Endocrinol (Lausanne) 2022; 13:893238. [PMID: 36147561 PMCID: PMC9487150 DOI: 10.3389/fendo.2022.893238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hypothalamus-pituitary-adrenal (HPA) axis plays critical roles in stress responses under challenging conditions such as hypoxia, via regulating gene expression and integrating activities of hypothalamus-pituitary-targets cells. However, the transcriptional regulatory mechanisms and signaling pathways of hypoxic stress in the pituitary remain to be defined. Here, we report that hypoxia induced dynamic changes in the transcription factors, hormones, and their receptors in the adult rat pituitary. Hypoxia-inducible factors (HIFs), oxidative phosphorylation, and cAMP signaling pathways were all differentially enriched in genes induced by hypoxic stress. In the pituitary gene network, hypoxia activated c-Fos and HIFs with specific pituitary transcription factors (Prop1), targeting the promoters of hormones and their receptors. HIF and its related signaling pathways can be a promising biomarker during acute or constant hypoxia. Hypoxia stimulated the transcription of marker genes for microglia, chemokines, and cytokine receptors of the inflammatory response. Corticotropin-releasing hormone receptor 1 (CRHR1) mediated the transcription of Pomc, Sstr2, and Hif2a, and regulated the function of HPA axis. Together with HIF, c-Fos initiated and modulated dynamic changes in the transcription of hormones and their receptors. The receptors were also implicated in the regulation of functions of target cells in the pituitary network under hypoxic stress. CRHR1 played an integrative role in the hypothalamus-pituitary-target axes. This study provides new evidence for CRHR1 involved changes of hormones, receptors, signaling molecules and pathways in the pituitary induced by hypoxia.
Collapse
Affiliation(s)
- Tong Ying Wang
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Research and Development, Jiuyuan Gene Engineering, Hangzhou, China
| | - Fang Yuan Xia
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Kang Xu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min Chao Lv
- Department of Orthopedics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Mahanand Chatoo
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Bilal Haider Shamsi
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Meng Chen Zhang
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qian Ru Liu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian Xing Liu
- Department of Cell and System Biology, University of Toronto, St. George, NB, Canada
| | - Dan Dan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Jiang Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji Zeng Du
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xue Qun Chen
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Wang X, Zang J, Yang Y, Lu S, Guan Q, Ye D, Wang Z, Zhou H, Li K, Wang Q, Wu Y, Luan Z. Transplanted Human Oligodendrocyte Progenitor Cells Restore Neurobehavioral Deficits in a Rat Model of Preterm White Matter Injury. Front Neurol 2021; 12:749244. [PMID: 34858313 PMCID: PMC8631304 DOI: 10.3389/fneur.2021.749244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm white matter injury (PWMI) is a common brain injury and a leading cause of life-long neurological deficits in premature infants; however, no effective treatment is available yet. This study aimed to investigate the fate and effectiveness of transplanted human oligodendrocyte progenitor cells (hOPCs) in a rat model of PWMI. Methods: Hypoxia-ischemia was induced in rats at postnatal day 3, and hOPCs (6 × 105 cells/5 μL) were intracerebroventricularly transplanted at postnatal day 7. Neurobehavior was assessed 12 weeks post-transplant using the CatWalk test and Morris water maze test. Histological analyses, as well as immunohistochemical and transmission electron microscopy, were performed after transcardial perfusion. Results: Transplanted hOPCs survived for 13 weeks in PWMI brains. They were widely distributed in the injured white matter, and migrated along the corpus callosum to the contralateral hemisphere. Notably, 82.77 ± 3.27% of transplanted cells differentiated into mature oligodendrocytes, which produced myelin around the axons. Transplantation of hOPCs increased the fluorescence intensity of myelin basic protein and the thickness of myelin sheaths as observed in immunostaining and transmission electron microscopy, while it reduced white matter atrophy at the level of gross morphology. With regard to neurobehavior, the CatWalk test revealed improved locomotor function and inter-paw coordination after transplantation, and the cognitive functions of hOPC-transplanted rats were restored as revealed by the Morris water maze test. Conclusions: Myelin restoration through the transplantation of hOPCs led to neurobehavioral improvements in PWMI rats, suggesting that transplanting hOPCs may provide an effective and promising therapeutic strategy in children with PWMI.
Collapse
Affiliation(s)
- Xiaohua Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China.,Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Zang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yinxiang Yang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Siliang Lu
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Guan
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dou Ye
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyan Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Haipeng Zhou
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ke Li
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Zuo Luan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Motavaf M, Piao X. Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Front Cell Neurosci 2021; 15:764486. [PMID: 34803612 PMCID: PMC8599582 DOI: 10.3389/fncel.2021.764486] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Smith MJ, Paton MCB, Fahey MC, Jenkin G, Miller SL, Finch-Edmondson M, McDonald CA. Neural stem cell treatment for perinatal brain injury: A systematic review and meta-analysis of preclinical studies. Stem Cells Transl Med 2021; 10:1621-1636. [PMID: 34542242 PMCID: PMC8641092 DOI: 10.1002/sctm.21-0243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/15/2022] Open
Abstract
Perinatal brain injury can lead to significant neurological and cognitive deficits and currently no therapies can regenerate the damaged brain. Neural stem cells (NSCs) have the potential to engraft and regenerate damaged brain tissue. The aim of this systematic review was to evaluate the preclinical literature to determine whether NSC administration is more effective than controls in decreasing perinatal brain injury. Controlled interventional studies of NSC therapy using animal models of perinatal brain injury were identified using MEDLINE and Embase. Primary outcomes were brain infarct size, motor, and cognitive function. Data for meta‐analysis were synthesized and expressed as standardized mean difference (SMD) with 95% confidence intervals (CI), using a random effects model. We also reported secondary outcomes including NSC survival, migration, differentiation, and effect on neuroinflammation. Eighteen studies met inclusion criteria. NSC administration decreased infarct size (SMD 1.09; CI: 0.44, 1.74, P = .001; I2 = 74%) improved motor function measured via the impaired forelimb preference test (SMD 2.27; CI: 0.85, 3.69, P = .002; I2 = 86%) and the rotarod test (SMD 1.88; CI: 0.09, 3.67, P = .04; I2 = 95%). Additionally, NSCs improved cognitive function measured via the Morris water maze test (SMD of 2.41; CI: 1.16, 3.66, P = .0002; I2 = 81%). Preclinical evidence suggests that NSC therapy is promising for the treatment of perinatal brain injury. We have identified key knowledge gaps, including the lack of large animal studies and uncertainty regarding the necessity of immunosuppression for NSC transplantation in neonates. These knowledge gaps should be addressed before NSC treatment can effectively progress to clinical trial.
Collapse
Affiliation(s)
- Madeleine J Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Madison Claire Badawy Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Zhang C, Guan Q, Shi H, Cao L, Liu J, Gao Z, Zhu W, Yang Y, Luan Z, Yao R. A novel RIP1/RIP3 dual inhibitor promoted OPC survival and myelination in a rat neonatal white matter injury model with hOPC graft. Stem Cell Res Ther 2021; 12:462. [PMID: 34407865 PMCID: PMC8375070 DOI: 10.1186/s13287-021-02532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 01/27/2023] Open
Abstract
Background The dual inhibitors of receptor interacting protein kinase-1 and -3 (RIP1 and RIP3) play an important role in cell death processes and inflammatory responses. White matter injury (WMI), a leading cause of neurodevelopmental disabilities in preterm infants, which is characterized by extensive myelination disturbances and demyelination. Neuroinflammation, leads to the loss and differentiation-inhibition of oligodendrocyte precursor cells (OPCs), represents a major barrier to myelin repair. Whether the novel RIP1/RIP3 dual inhibitor ZJU-37 can promote transplanted OPCs derived from human neural stem cells (hOPCs) survival, differentiation and myelination remains unclear. In this study, we investigated the effect of ZJU-37 on myelination and neurobehavioral function in a neonatal rat WMI model induced by hypoxia and ischemia. Methods In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia, and then treated with ZJU-37 or/and hOPCs, then OPCs apoptosis, myelination, glial cell and NLRP3 inflammasome activation together with cognitive outcome were evaluated at 12 weeks after transplantation. In vitro, the effect of ZJU-37 on NLRP3 inflammasome activation in astrocytes induced by oxygen–glucose deprivation (OGD) were examined by western blot and immunofluorescence. The effect of ZJU-37 on OPCs apoptosis induced by the conditioned medium from OGD-injured astrocytes (OGD-astrocyte-CM) was analyzed by flow cytometry and immunofluorescence. Results ZJU-37 combined with hOPCs more effectively decreased OPC apoptosis, promoted myelination in the corpus callosum and improved behavioral function compared to ZJU-37 or hOPCs treatment. In addition, the activation of glial cells and NLRP3 inflammasome was reduced by ZJU-37 or/and hOPCs treatment in the neonatal rat WMI model. In vitro, it was also confirmed that ZJU-37 can suppress NLRP3 inflammasome activation in astrocytes induced by OGD. Not only that, the OGD-astrocyte-CM treated with ZJU-37 obviously attenuated OPC apoptosis and dysdifferentiation caused by the OGD-astrocyte-CM. Conclusions The novel RIP1/RIP3 dual inhibitor ZJU-37 may promote OPC survival, differentiation and myelination by inhibiting NLRP3 inflammasome activation in a neonatal rat model of WMI with hOPC graft.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qian Guan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Hao Shi
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Lingsheng Cao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zixuan Gao
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wenxi Zhu
- Class ten, Grade two, Xuzhou Senior School, Xuzhou, 221003, People's Republic of China
| | - Yinxiang Yang
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
19
|
Yang LJ, Cui H. Olig2 knockdown alleviates hypoxic-ischemic brain damage in newborn rats. Histol Histopathol 2021; 36:675-684. [PMID: 34013967 DOI: 10.14670/hh-18-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Neuronal damage is an important pathological mechanism in neonatal hypoxic-ischemic brain damage (HIBD). We found in our previous studies that oligodendrocyte transcription factor 2 (Olig2) downregulation was able to increase cell survival in the brain. However, the specific mechanism has yet to be clarified. METHODS Sprague-Dawley rats aged 3 d were randomly divided into three groups: the normal control group, the Olig2-RNAi group, and the RNAi-negative control group. The normal control group received no treatment, the Olig2-RNAi group received the Olig2 RNAi adenovirus, and the RNAi-negative control group was given the control adenovirus after the completion of the HIBD model. Infarct lesions and their volumes were observed by triphenyltetrazolium chloride (TTC) staining 3 d after the completion of the adenovirus local injection. The condition of the tissue was characterized by hematoxylin-eosin staining 7 d after the model was established, and cell viability was determined by azure methylene blue staining. Subcellular damage was analyzed by transmission electron microscopy. Rotarod analysis was performed to detect moving behavior ability and an MWM assay was conducted to evaluate the memory. RESULTS TTC staining showed a smaller brain injury area in the Olig2-RNAi group than in the RNAi-negative control group. Hematoxylin-eosin staining indicated the presence of severe cell injury in the hippocampal region after HIBD, which improved after Olig2 knockdown. Azure methylene blue staining and electron microscopy results suggested that the cells improved after Olig2 knockdown. The rats stayed longer on the rotating rod, and their latency in the water maze test was gradually shortened relative to that of the rats in the Olig2-RNAi negative control group. CONCLUSION Olig2 knockdown can promote the repair of hypoxic-ischemic brain damage in newborn rats.
Collapse
Affiliation(s)
- L J Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - H Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Huang J, Sun L, Mennigen JA, Liu Y, Liu S, Zhang M, Wang Q, Tu W. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124491. [PMID: 33223314 DOI: 10.1016/j.jhazmat.2020.124491] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In recent years, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has emerged as a substitute for PFOS with large demand and application in the Chinese market. However, little is known about potential developmental effects of OBS. In this study, zebrafish embryos were acutely exposed to different concentrations of OBS and the positive control PFOS for a comparative developmental toxicity assessment. OBS caused hatching delays, body axis curvature, neurobehavioral inhibition and abnormal cardiovascular development. These organismal effects were accompanied by change of development related genes expression profile, in which some cases were similar to PFOS. Overall, the toxic effects induced by OBS were generally milder than that of PFOS. Further investigation suggested that both OBS and PFOS disrupted ciliogenesis, evidenced by the ciliary immunostaining, changes in gene expression of kinesin family, dynein arm family and tubulin family members, as well as downregulation of the abundance of motor proteins including KIF3C, DYNC1H1 and DYNC1LI1. The influence of PFOS was stronger than that of OBS on ciliary genes and proteins. Molecular docking analysis revealed that both OBS and PFOS fitted into the motor proteins tightly, but binding affinity between OBS and motor proteins was lower than PFOS. Collectively, OBS and PFOS may act on ciliary motor proteins to interfere with ciliogenesis, leading to ciliary dysfunction and providing a novel probable action mode linked to developmental toxicity. This raises concerns regarding the health risks of the novel PFOS alternative OBS.
Collapse
Affiliation(s)
- Jing Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
21
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
22
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
23
|
Tuina Massage Improves Cognitive Functions of Hypoxic-Ischemic Neonatal Rats by Regulating Genome-Wide DNA Hydroxymethylation Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1282085. [PMID: 31772590 PMCID: PMC6854251 DOI: 10.1155/2019/1282085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
In addition to abnormalities of motor and posture, children with cerebral palsy (CP) often have intellectual disability. As a complementary and alternative traditional Chinese medicine (TCM) therapy, Chinese Tuina massage, also called Tuina in China, has been widely applied in clinical treatment for CP in China for a long time. However, the molecular basis for this still remains largely unknown. Recently, DNA hydroxymethylation has been shown to be sensitive to environment and plays critical roles in some neurological disorders, whereas the research focusing on the relationship between 5 hmC and Tuina therapy for cerebral palsy is deficient. In our study, we first observed that Tuina improved learning and memory functions of hypoxic-ischemic (HI) rat pups. Meanwhile, 5 hmC level of the temporal lobe cortex in the HI neonatal rat model is decreased significantly compared to that of the rats in control and Tuina groups. Then, we used the hMeDIP-Seq method to explore whether and how DNA hydroxymethylation is involved in Tuina therapy for cerebral palsy. Genomic annotation of DhMRs of HI group's hypo-hydroxymethylation to genes revealed enrichment in multiple neurodevelopmental signaling pathways. Moreover, we found the depletion of 5 hmC modifications in genes associated with neuronal development was accompanied by reduced mRNA levels of these genes. Taken together, our results indicate that Tuina may regulate the expression of neurodevelopment-related genes by changing the status of DNA hydroxymethylation, thereby improving learning and memory functions of cerebral palsy.
Collapse
|
24
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2019; 9:CD013201. [PMID: 31549743 PMCID: PMC6757514 DOI: 10.1002/14651858.cd013201.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) remains a substantial issue in neonatal intensive care units worldwide. Current therapies to prevent or treat GMH-IVH are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, and/or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. OBJECTIVES To determine the benefits and harms of stem cell-based interventions for prevention or treatment of germinal matrix-intraventricular haemorrhage (GM-IVH) in preterm infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 1), in the Cochrane Library; MEDLINE via PubMed (1966 to 7 January 2019); Embase (1980 to 7 January 2019); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to 7 January 2019). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA We attempted to identify randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing (1) stem cell-based interventions versus control; (2) mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; (3) stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or (4) MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH. DATA COLLECTION AND ANALYSIS For each of the included trials, two review authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs, other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). Primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, GM-IVH, and extension of pre-existing non-severe GM-IVH. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 769 references. We did not find any completed studies for inclusion. One randomised controlled trial is currently registered and ongoing. Five phase 1 trials are described in the excluded studies. AUTHORS' CONCLUSIONS Currently no evidence is available to show the benefits or harms of stem cell-based interventions for treatment or prevention of GM-IVH in preterm infants.
Collapse
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | - Matteo Bruschettini
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
- Skåne University HospitalCochrane SwedenWigerthuset, Remissgatan 4, first floorroom 11‐221LundSweden22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San AntonioPediatrics, Division of NeonatologySan AntonioTexasUSA
| | - Bernard Thébaud
- Children's Hospital of Eastern OntarioDepartment of PediatricsOttawaONCanada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell ResearchOttawaCanada
- University of OttawaDepartment of Cellular and Molecular MedicineOttawaCanada
| | - David Ley
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | | |
Collapse
|
25
|
Zhang Y, Zhang Y, Chen D, Wang C, Chen L, Gao C, Fan W, Shi J, Zhang J, Li B. Genome-Wide Alteration of 5-Hydroxymethylcytosine in Hypoxic-Ischemic Neonatal Rat Model of Cerebral Palsy. Front Mol Neurosci 2019; 12:214. [PMID: 31551709 PMCID: PMC6737274 DOI: 10.3389/fnmol.2019.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder usually occurring early in life and persisting through the whole life. Several risk factors, including perinatal hypoxia-ischemia (HI), may contribute to occurrence of CP in preterm infants. DNA hydroxymethylation has been shown to play an important role in neurodevelopment and neurodegenerative disorders. However, the effect of DNA hydroxymethylation in CP remains unknown. The aim of this study is to explore whether and how DNA hydroxymethylation is involved in CP pathogenesis. We observed that overall 5-hydroxymethylcytosine (5hmC) abundance in the cortex of the temporal lobe of rat pups was decreased significantly after hypoxic-ischemic injury, and the reduced expression of Tet1 and Tet2 enzymes might be responsible for this change. Identified differential hydroxymethylation regions (DhMRs) were richly involved in multiple signaling pathways related to neuronal development and function. Furthermore, we found that reduced 5hmC modification on the DhMRs-related genes were accompanied by decrease of their mRNA expression levels. These results suggest that 5hmC modifications are involved in the CP pathogenesis and may potentially serve as a new therapeutic target.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaodong Zhang
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Danmei Chen
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Cuiting Wang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Long Chen
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei Fan
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
26
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
27
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| |
Collapse
|