1
|
Han XX, Cai C, Yu LM, Wang M, Yang W, Hu DY, Ren J, Zhu LY, Deng JJ, Chen QQ, He H, Gao Z. Glioma stem cells and neural stem cells respond differently to BMP4 signaling. CELL REGENERATION 2022; 11:36. [DOI: 10.1186/s13619-022-00136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
AbstractMalignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates, resistance to combined therapy, and dismal prognosis. Glioma stem cells (GSCs) are likely responsible for tumor progression, resistance to therapy, recurrence, and poor prognosis owing to their high self-renewal and tumorigenic potential. As a family member of BMP signaling, bone morphogenetic protein4 (BMP4) has been reported to induce the differentiation of GSCs and neural stem cells (NSCs). However, the molecular mechanisms underlying the BMP4-mediated effects in these two cell types are unclear. In this study, we treated hGSCs and hNSCs with BMP4 and compared the phenotypic and transcriptional changes between these two cell types. Phenotypically, we found that the growth of hGSCs was greatly inhibited by BMP4, but the same treatment only increased the cell size of hNSCs. While the RNA sequencing results showed that BMP4 treatment evoked significantly transcriptional changes in both hGSCs and hNSCs, the profiles of differentially expressed genes were distinct between the two groups. A gene set that specifically targeted the proliferation and differentiation of hGSCs but not hNSCs was enriched and then validated in hGSC culture. Our results suggested that hGSCs and hNSCs responded differently to BMP4 stimulation. Understanding and investigating different responses between hGSCs and hNSCs will benefit finding partner factors working together with BMP4 to further suppress GSCs proliferation and stemness without disturbing NSCs.
Collapse
|
2
|
Thool M, Dey C, Bhattacharyya S, Sudhagar S, Thummer RP. Generation of a Recombinant Stem Cell-Specific Human SOX2 Protein from Escherichia coli Under Native Conditions. Mol Biotechnol 2021; 63:327-338. [PMID: 33570706 DOI: 10.1007/s12033-021-00305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The stem cell-specific SOX2 transcription factor is critical for early embryonic development and the maintenance of embryonic and neural stem cell identity. It is also crucial for the generation of induced pluripotent and neural stem cells, thus providing immense prospect in patient-specific therapies. Here, we report soluble expression and purification of human SOX2 protein under native conditions from a bacterial system. To generate this macromolecule, we codon-optimized the protein-coding sequence and fused it to a nuclear localization signal, a protein transduction domain, and a His-tag. This was then cloned into a protein expression vector and was expressed in Escherichia coli. Subsequently, we have screened and identified the optimal expression conditions to obtain recombinant fusion protein in a soluble form and studied its expression concerning the position of fusion tags at either terminal. Furthermore, we purified two versions of recombinant SOX2 fusion proteins to homogeneity under native conditions and demonstrated that they maintained their secondary structure. This molecular tool can substitute genetic and viral forms of SOX2 to facilitate the derivation of integration-free induced pluripotent and neural stem cells. Furthermore, it can be used in elucidating its role in stem cells, various cellular processes and diseases, and for structural and biochemical studies.
Collapse
Affiliation(s)
- Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|