1
|
Costa CMM, Santos DS, Opretzka LCF, de Assis Silva GS, Santos GC, Evangelista AF, Soares MBP, Villarreal CF. Different mechanisms guide the antinociceptive effect of bone marrow-mononuclear cells and bone marrow-mesenchymal stem/stromal cells in trigeminal neuralgia. Life Sci 2024; 354:122944. [PMID: 39111567 DOI: 10.1016/j.lfs.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
AIMS Trigeminal neuralgia (TN) is a type of chronic orofacial pain evoked by trivial stimuli that manifests as episodes of excruciating and sudden, recurrent paroxysmal pain. Most patients are refractory to pharmacological therapy used for the treatment of TN. Mononuclear cells (MNC) and mesenchymal stem/stromal cells (MSC) have shown therapeutic potential in painful neuropathies, but their mechanism of action is not fully understood. The present work aimed to investigate the antinociceptive effect and mechanism of action of MNC and MSC in experimental TN. MATERIALS AND METHODS Mice submitted to the chronic constriction injury of the infraorbital nerve (CCI-ION) mouse model of TN received a single intravenous injection of saline, MNC, or MSC (1 × 106 cells/mouse). The effect of the treatments on the behavioral signs of painful neuropathy, morphological aspects of the infraorbital nerve, and inflammatory and oxidative stress markers in the infraorbital nerve were assessed. KEY FINDINGS MNC and MSC improved behavioral painful neuropathy, activated key cell signaling antioxidant pathways by increasing Nrf2 expression, and reduced the proinflammatory cytokines IL-1β and TNF-α. However, treatment with MSC, but not MNC, was associated with a sustained increase of IL-10 and with the re-establishment of the morphometric pattern of the infraorbital nerve, indicating a difference in the mechanism of action between MNC and MSC. In line with this result, in IL-10 knockout mice, MSC transplantation did not induce an antinociceptive effect. SIGNIFICANCE Importantly, these data suggest an IL-10-induced disease-modifying profile related to MSC treatment and reinforce cell therapy's potential in treating trigeminal neuralgia.
Collapse
Affiliation(s)
| | | | | | | | - Girlaine Café Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil.
| | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; Institute of Advanced Systems in Health, SENAI CIMATEC, Salvador 41650-010, BA, Brazil.
| | - Cristiane Flora Villarreal
- Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil.
| |
Collapse
|
2
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
3
|
Arikan G, Turan V, Kurekeken M, Goksoy HS, Dogusan Z. Autologous bone marrow-derived nucleated cell (aBMNC) transplantation improves endometrial function in patients with refractory Asherman's syndrome or with thin and dysfunctional endometrium. J Assist Reprod Genet 2023; 40:1163-1171. [PMID: 36662355 PMCID: PMC10239402 DOI: 10.1007/s10815-023-02727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The purpose was to evaluate the effect of intrauterine injection of aBMNC on the endometrial function in patients with refractory Asherman's syndrome (AS) and/or thin and dysfunctional endometrium (TE). STUDY DESIGN This is a prospective, experimental, non-controlled study MATERIAL AND METHODS: The study was carried out between December 2018 and December 2020 on 20 patients, who were of age < 45 years and had oligo/amenorrhea and primary infertility due to refractory AS and/or TE. One hundred ml BM was extracted. aBMNC cells were separated according to generic volume reduction protocol by using the Cell Separation System SEPAX S-100 table top centrifuge system. We have evaluated CD34+, mononuclear cell (MNC), and total nucleated cell (TNC) counts. The transplantation aBMNC was performed by two intrauterine injections at an interval of one week, transvaginally into the endometrial-myometrial junction by an ovum aspiration needle. Midcyclic endometrial thickness (ET) and gestations after transplantation were evaluated. RESULTS The mean TNC, MNC, and CD34+ cells were 11.55 ± 4.7 × 108, 3.85 ± 2.01 × 108, and 7.00 ± 2.88 × 106 at first injection, respectively, and 6.85 ± 2.67 × 108, 2.04 ± 1.11 × 108, and 3.44 ± 1.31 × 106 at second injection, respectively. The maximum posttransplantation ET was significantly higher than the maximum pretransplantation ET: 2.97 ± 0.48 vs. 5.76 ± 1.19 (mean ± standard deviation, p < 0.01). Twelve patients had frozen-thaw embryo transfers after the study. In 42% (n = 5 of 12) of the patients, pregnancy was achieved. One of the five patients delivered a healthy baby at term. CONCLUSIONS Autologous BMNC transplantation may contribute to endometrial function in patients with AS and/or TE.
Collapse
Affiliation(s)
- Gurkan Arikan
- Department of Obstetrics and Gynecology, Altinbaş University, Medical Park Bahçelievler Hospital, Kültür Sok. No. 1 E5 Yolu, 34160 Bahçelievler, Istanbul, Turkey.
| | - Volkan Turan
- Department of Obstetrics and Gynecology, Altinbaş University, Medical Park Bahçelievler Hospital, Kültür Sok. No. 1 E5 Yolu, 34160 Bahçelievler, Istanbul, Turkey
- Istanbul Health and Technology University, Faculty of Medicine, Istanbul, Turkey
| | - Meryem Kurekeken
- Department of Obstetrics and Gynecology, Altinbaş University, Medical Park Bahçelievler Hospital, Kültür Sok. No. 1 E5 Yolu, 34160 Bahçelievler, Istanbul, Turkey
- Reproductive Medicine and Infertility Center, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Hasan Sami Goksoy
- Department of Hematology, Yeni Yuzyil University Gaziosmanpaşa Hospital, Istanbul, Turkey
| | - Zeynep Dogusan
- Bone Marrow Transplantation Center, Yeni Yuzyil University Gaziosmanpaşa Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
α-Linolenic acid regulates macrophages via GPR120-NLRP3 inflammasome pathway to ameliorate diabetic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Shaimardanova AA, Chulpanova DS, Mullagulova AI, Afawi Z, Gamirova RG, Solovyeva VV, Rizvanov AA. Gene and Cell Therapy for Epilepsy: A Mini Review. Front Mol Neurosci 2022; 15:868531. [PMID: 35645733 PMCID: PMC9132249 DOI: 10.3389/fnmol.2022.868531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic non-infectious disease of the brain, characterized primarily by recurrent unprovoked seizures, defined as an episode of disturbance of motor, sensory, autonomic, or mental functions resulting from excessive neuronal discharge. Despite the advances in the treatment achieved with the use of antiepileptic drugs and other non-pharmacological therapies, about 30% of patients suffer from uncontrolled seizures. This review summarizes the currently available methods of gene and cell therapy for epilepsy and discusses the development of these approaches. Currently, gene therapy for epilepsy is predominantly adeno-associated virus (AAV)-mediated delivery of genes encoding neuro-modulatory peptides, neurotrophic factors, enzymes, and potassium channels. Cell therapy for epilepsy is represented by the transplantation of several types of cells such as mesenchymal stem cells (MSCs), bone marrow mononuclear cells, neural stem cells, and MSC-derived exosomes. Another approach is encapsulated cell biodelivery, which is the transplantation of genetically modified cells placed in capsules and secreting various therapeutic agents. The use of gene and cell therapy approaches can significantly improve the condition of patient with epilepsy. Therefore, preclinical, and clinical studies have been actively conducted in recent years to prove the benefits and safety of these strategies.
Collapse
Affiliation(s)
| | - Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aysilu I. Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zaid Afawi
- Center for Neuroscience, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Rimma G. Gamirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Albert A. Rizvanov,
| |
Collapse
|
6
|
Perspectives of glycemic variability in diabetic neuropathy: a comprehensive review. Commun Biol 2021; 4:1366. [PMID: 34876671 PMCID: PMC8651799 DOI: 10.1038/s42003-021-02896-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic neuropathy is one of the most prevalent chronic complications of diabetes, and up to half of diabetic patients will develop diabetic neuropathy during their disease course. Notably, emerging evidence suggests that glycemic variability is associated with the pathogenesis of diabetic complications and has emerged as a possible independent risk factor for diabetic neuropathy. In this review, we describe the commonly used metrics for evaluating glycemic variability in clinical practice and summarize the role and related mechanisms of glycemic variability in diabetic neuropathy, including cardiovascular autonomic neuropathy, diabetic peripheral neuropathy and cognitive impairment. In addition, we also address the potential pharmacological and non-pharmacological treatment methods for diabetic neuropathy, aiming to provide ideas for the treatment of diabetic neuropathy. Zhang et al. describe metrics for evaluating glycaemic variability (GV) in clinical practice and summarize the role and related mechanisms of GV in diabetic neuropathy, including cardiovascular autonomic neuropathy, diabetic peripheral neuropathy and cognitive impairment. They aim to stimulate ideas for the treatment of diabetic neuropathy.
Collapse
|