1
|
Lou Y. Unlocking the code for stroke treatment and care. J Cent Nerv Syst Dis 2024; 16:11795735241280805. [PMID: 39238575 PMCID: PMC11375668 DOI: 10.1177/11795735241280805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Ying Lou
- Sage Consulting (Beijing) Co. Ltd., Beijing, China
| |
Collapse
|
2
|
Hartsoe P, Holguin F, Chu HW. Mitochondrial Dysfunction and Metabolic Reprogramming in Obesity and Asthma. Int J Mol Sci 2024; 25:2944. [PMID: 38474191 PMCID: PMC10931700 DOI: 10.3390/ijms25052944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction and metabolic reprogramming have been extensively studied in many disorders ranging from cardiovascular to neurodegenerative disease. Obesity has previously been associated with mitochondrial fragmentation, dysregulated glycolysis, and oxidative phosphorylation, as well as increased reactive oxygen species production. Current treatments focus on reducing cellular stress to restore homeostasis through the use of antioxidants or alterations of mitochondrial dynamics. This review focuses on the role of mitochondrial dysfunction in obesity particularly for those suffering from asthma and examines mitochondrial transfer from mesenchymal stem cells to restore function as a potential therapy. Mitochondrial targeted therapy to restore healthy metabolism may provide a unique approach to alleviate dysregulation in individuals with this unique endotype.
Collapse
Affiliation(s)
- Paige Hartsoe
- Department of Medicine, National Jewish Health, Denver, CO 80222, USA
| | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO 80222, USA
| |
Collapse
|
3
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Takano T, Taira Y, Suzuki R, Matsumoto H. Immortalized Canine Adipose-Derived Mesenchymal Stem Cells Maintain the Immunomodulatory Capacity of the Original Primary Cells. Int J Mol Sci 2023; 24:17484. [PMID: 38139314 PMCID: PMC10743981 DOI: 10.3390/ijms242417484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising cell source for stem cell therapy of intractable diseases in veterinary medicine, but donor-dependent cellular heterogeneity is an issue that influences therapeutic efficacy. Thus, we previously established immortalized cells that maintain the fundamental properties of primary cells, but functional evaluation had not been performed. Therefore, we evaluated the immunomodulatory capacity of the immortalized canine adipose-derived MSCs (cADSCs) in vitro and in vivo to investigate whether they maintain primary cell functions. C57BL/6J mice were treated with dextran sulfate sodium (DSS) to induce colitis, injected intraperitoneally with immortalized or primary cADSCs on day 2 of DSS treatment, and observed for 10 days. Administration of immortalized cADSCs improved body weight loss and the disease activity index (DAI) in DSS-induced colitic mice by shifting peritoneal macrophage polarity from the M1 to M2 phenotype, suppressing T helper (Th) 1/Th17 cell responses and inducing regulatory T (Treg) cells. They also inhibited the proliferation of mouse and canine T cells in vitro. These immunomodulatory effects were comparable with primary cells. These results highlight the feasibility of our immortalized cADSCs as a cell source for stem cell therapy with stable therapeutic efficacy because they maintain the immunomodulatory capacity of primary cells.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (T.N.); (M.M.)
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (T.N.); (M.M.)
| | - Takashi Takano
- Laboratory of Veterinary Public Health, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| |
Collapse
|
4
|
Mukkala AN, Jerkic M, Khan Z, Szaszi K, Kapus A, Rotstein O. Therapeutic Effects of Mesenchymal Stromal Cells Require Mitochondrial Transfer and Quality Control. Int J Mol Sci 2023; 24:15788. [PMID: 37958771 PMCID: PMC10647450 DOI: 10.3390/ijms242115788] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Due to their beneficial effects in an array of diseases, Mesenchymal Stromal Cells (MSCs) have been the focus of intense preclinical research and clinical implementation for decades. MSCs have multilineage differentiation capacity, support hematopoiesis, secrete pro-regenerative factors and exert immunoregulatory functions promoting homeostasis and the resolution of injury/inflammation. The main effects of MSCs include modulation of immune cells (macrophages, neutrophils, and lymphocytes), secretion of antimicrobial peptides, and transfer of mitochondria (Mt) to injured cells. These actions can be enhanced by priming (i.e., licensing) MSCs prior to exposure to deleterious microenvironments. Preclinical evidence suggests that MSCs can exert therapeutic effects in a variety of pathological states, including cardiac, respiratory, hepatic, renal, and neurological diseases. One of the key emerging beneficial actions of MSCs is the improvement of mitochondrial functions in the injured tissues by enhancing mitochondrial quality control (MQC). Recent advances in the understanding of cellular MQC, including mitochondrial biogenesis, mitophagy, fission, and fusion, helped uncover how MSCs enhance these processes. Specifically, MSCs have been suggested to regulate peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α)-dependent biogenesis, Parkin-dependent mitophagy, and Mitofusins (Mfn1/2) or Dynamin Related Protein-1 (Drp1)-mediated fission/fusion. In addition, previous studies also verified mitochondrial transfer from MSCs through tunneling nanotubes and via microvesicular transport. Combined, these effects improve mitochondrial functions, thereby contributing to the resolution of injury and inflammation. Thus, uncovering how MSCs affect MQC opens new therapeutic avenues for organ injury, and the transplantation of MSC-derived mitochondria to injured tissues might represent an attractive new therapeutic approach.
Collapse
Affiliation(s)
- Avinash Naraiah Mukkala
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mirjana Jerkic
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
| | - Zahra Khan
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katalin Szaszi
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Andras Kapus
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ori Rotstein
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|