Yardley JE, Rees JL, Funk DR, Toghi-Eshghi SR, Boulé NG, Senior PA. Effects of Moderate Cycling Exercise on Blood Glucose Regulation Following Successful Clinical Islet Transplantation.
J Clin Endocrinol Metab 2019;
104:493-502. [PMID:
30403817 DOI:
10.1210/jc.2018-01498]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT
Islet transplantation is effective in preventing hypoglycemia in patients with type 1 diabetes (T1D). However, it is unknown whether transplanted islets regulate plasma glucose concentrations appropriately during and after exercise in human islet transplant recipient (ITxs).
OBJECTIVE
To determine the effect of exercise on plasma glucose, insulin, and glucagon concentrations in ITxs compared with control subjects (CONs) without diabetes.
INTERVENTION
Participants completed two conditions in random order: 45 minutes of aerobic exercise (60% VO2peak) and 45 minutes of seated rest. Blood samples were drawn at baseline, immediately after exercise or rest, and every 15 minutes throughout a 60-minute recovery period. Postexercise (24 hours) interstitial glucose was monitored with continuous glucose monitoring (CGM).
RESULTS
Twenty-four participants (12 ITxs, 12 CONs) completed the protocol. Plasma glucose decreased more over time with exercise in ITxs compared with CONs [main effects of treatment (P = 0.019), time (P = 0.001), and group (P = 0.012)]. Plasma glucose was lower during exercise vs rest in ITxs but not CONs [treatment by group interaction (P = 0.028)]. Plasma glucose decreased more during exercise than during rest [treatment by time interaction (P = 0.001)]. One ITx and one CON experienced plasma glucose concentrations <3.5 mmol/L at the end of exercise, both of whom returned above that threshold within 15 minutes. Nocturnal CGM glucose <3.5 mmol/L was detected in two CONs but no ITxs.
CONCLUSION
Despite a greater plasma glucose decline during exercise in ITxs, hypoglycemia risk was similar during and after exercise in ITxs compared with CONs.
Collapse