1
|
Schromm AB, Paulowski L, Kaconis Y, Kopp F, Koistinen M, Donoghue A, Keese S, Nehls C, Wernecke J, Garidel P, Sevcsik E, Lohner K, Sanchez-Gomez S, Martinez-de-Tejada G, Brandenburg K, Brameshuber M, Schütz GJ, Andrä J, Gutsmann T. Cathelicidin and PMB neutralize endotoxins by multifactorial mechanisms including LPS interaction and targeting of host cell membranes. Proc Natl Acad Sci U S A 2021; 118:e2101721118. [PMID: 34183393 PMCID: PMC8271772 DOI: 10.1073/pnas.2101721118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial peptides (AMPs) contribute to an effective protection against infections. The antibacterial function of AMPs depends on their interactions with microbial membranes and lipids, such as lipopolysaccharide (LPS; endotoxin). Hyperinflammation induced by endotoxin is a key factor in bacterial sepsis and many other human diseases. Here, we provide a comprehensive profile of peptide-mediated LPS neutralization by systematic analysis of the effects of a set of AMPs and the peptide antibiotic polymyxin B (PMB) on the physicochemistry of endotoxin, macrophage activation, and lethality in mice. Mechanistic studies revealed that the host defense peptide LL-32 and PMB each reduce LPS-mediated activation also via a direct interaction of the peptides with the host cell. As a biophysical basis, we demonstrate modifications of the structure of cholesterol-rich membrane domains and the association of glycosylphosphatidylinositol (GPI)-anchored proteins. Our discovery of a host cell-directed mechanism of immune control contributes an important aspect in the development and therapeutic use of AMPs.
Collapse
Affiliation(s)
- Andra B Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany;
| | - Laura Paulowski
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Yani Kaconis
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Franziska Kopp
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Max Koistinen
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Annemarie Donoghue
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Susanne Keese
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Christian Nehls
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | - Julia Wernecke
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
- Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Patrick Garidel
- Biophysikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06108 Halle, Germany
| | - Eva Sevcsik
- Institute of Applied Physics at TU Wien, Vienna 1040, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
| | - Susana Sanchez-Gomez
- Department of Microbiology and Parasitology, University of Navarra, E-31008 Pamplona, Spain
| | - Guillermo Martinez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, E-31008 Pamplona, Spain
- Navarra Institute for Health Research, E-31008 Pamplona, Spain
| | - Klaus Brandenburg
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| | | | | | - Jörg Andrä
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
- Department of Biotechnology, Faculty of Life Sciences, Hamburg University of Applied Sciences, D-21033 Hamburg, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, D-23845 Borstel, Germany
| |
Collapse
|
2
|
Heinbockel L, Palacios-Chaves L, Alexander C, Rietschel E, Behrends J, Correa W, Fukuoka S, Gutsmann T, Ulmer AJ, Brandenburg K. Mechanism of Hbγ-35-induced an increase in the activation of the human immune system by endotoxins. Innate Immun 2014; 21:305-13. [PMID: 25034969 DOI: 10.1177/1753425914535957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endotoxins (LPS) are highly potent immune stimulatory molecules and are mainly known for triggering Gram-negative sepsis. However, besides their toxic effects, this stimulatory function may be advantageous, for example when used as an adjuvant during vaccination. Thus, there is always a narrow range between the useful wake-up of the immune system and its overwhelming reaction, which can lead to diseases like sepsis. This raises the question of which conformational properties are responsible for making the LPS aggregates more or less potent. As described previously, the size, type and form of LPS aggregates play a major role in their immune stimulatory activity. In this study we investigate the role of these parameters. On the one hand, we use a peptide (Pep19-2.5; Aspidasept) that causes a change of the LPS aggregate structure into a less toxic state; on the other hand, we use a potent immune stimulating peptide (Hbγ-35), leading to higher toxicity. We have found opposing effects on LPS aggregate conformations allowing a better understanding of the processes of immune stimulation.
Collapse
Affiliation(s)
- Lena Heinbockel
- Research Center Borstel, Division of Biophysics, Borstel, Germany
| | - Leyre Palacios-Chaves
- Research Center Borstel, Division of Biophysics, Borstel, Germany Instituto de Agrobiotecnología CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | | | | | - Jochen Behrends
- Research Center Borstel, Division of Fluorescence Cytometry, Borstel, Germany
| | - Wilmar Correa
- Research Center Borstel, Division of Biophysics, Borstel, Germany
| | - Satoshi Fukuoka
- National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Thomas Gutsmann
- Research Center Borstel, Division of Biophysics, Borstel, Germany
| | - Artur J Ulmer
- Research Center Borstel, Division of Biophysics, Borstel, Germany
| | | |
Collapse
|
3
|
Richter W, Vogel V, Howe J, Steiniger F, Brauser A, Koch MH, Roessle M, Gutsmann T, Garidel P, Mäntele W, Brandenburg K. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immun 2010; 17:427-38. [PMID: 20682588 DOI: 10.1177/1753425910372434] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipopolysaccharides (LPSs) from Gram-negative bacteria are strong elicitors of the human immune systems. There is strong evidence that aggregates and not monomers of LPS play a decisive role at least in the initial stages of cell activation of immune cells such as mononuclear cells. In previous reports, it was shown that the biologically most active part of enterobacterial LPS, hexa-acyl bisphosphorylated lipid A, adopts a particular supramolecular conformation, a cubic aggregate structure. However, little is known about the size and morphology of these aggregates, regarding the fact that LPS may have strong variations in the length of the saccharide chains (various rough mutant and smooth-form LPS). Thus, in the present paper, several techniques for the determination of details of the aggregate morphology such as freeze-fracture and cryo-electron microscopy, analytical ultracentrifugation, laser backscattering analysis, and small-angle X-ray scattering were applied for various endotoxin (lipid A and different LPS) preparations. The data show a variety of different morphologies not only for different endotoxins but also when comparing different applied techniques. The data are interpreted with respect to the suitability of the single techniques, in particular on the basis of available literature data.
Collapse
Affiliation(s)
- Walter Richter
- Elektronenmikroskopisches Zentrum, Friedrich-Schiller-Universität Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wong KF, Luk JM, Cheng RH, Klickstein LB, Fan ST. Characterization of two novel LPS‐binding sites in leukocyte integrin βA domain. FASEB J 2007; 21:3231-9. [PMID: 17522381 DOI: 10.1096/fj.06-7579com] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipopolysaccharide (LPS), a bacterial endotoxin, triggers deleterious systemic inflammatory responses when released into blood circulation, causing organ dysfunction and death. In response to LPS stimulation, CD14 and toll-like receptor (TLR)-4 elicit inflammatory signaling cascades. Although leukocyte integrins (CD11b/CD18 and CD11c/CD18) were reported to bind LPS and induce NF-kappaB translocation, the evidence on such epitope location remains elusive. The present study aims to delineate the LPS-binding sites on the integrin CD18 antigen and to design peptide(s) as potential prophylactic and/or therapeutic agents to modulate LPS effects in activated Jurkat cells. Epitope mapping analysis using a series of CD18 truncated variants revealed two putative LPS-binding sites within the betaA region (216-248 and 266-318 a.a.), which were further confirmed by point mutation studies. Inhibition assay demonstrated that the CD18-betaA(266-318) peptide could block LPS binding in a dose-dependent manner. Our data also indicated that treatment with the CD18-peptide modulated TNF-alpha mRNA transcription via the NF-kappaB signaling pathway in LPS-activated Jurkat cells. In conclusion, we have identified two novel LPS-binding sites located at the CD18 betaA domain of leukocyte integrin, and the integrin peptide betaA(266-318) is shown to inhibit LPS binding and subsequent inflammatory events, having therapeutic implications to cure gram-negative endotoxemia.
Collapse
Affiliation(s)
- Kwong-Fai Wong
- Department of Surgery, The University of Hong Kong, Jockey Club Clinical Research Center, 21 Sassoon Rd., Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|