1
|
Hao S, Gao M, Li Q, Shu L, Wang P, Hao G. Machine learning predicts cuproptosis-related lncRNAs and survival in glioma patients. Sci Rep 2024; 14:22323. [PMID: 39333603 PMCID: PMC11437180 DOI: 10.1038/s41598-024-72664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Gliomas are the most common tumor in the central nervous system in adults, with glioblastoma (GBM) representing the most malignant form, while low-grade glioma (LGG) is a less severe. The prognosis for glioma remains poor even after various treatments, such as chemotherapy and immunotherapy. Cuproptosis is a newly defined form of programmed cell death, distinct from ferroptosis and apoptosis, primarily caused by the accumulation of the copper within cells. In this study, we compared the difference between the expression of cuproptosis-related genes in GBM and LGG, respectively, and conducted further analysis on the enrichment pathways of the exclusive expressed cuproptosis-related mRNAs in GBM and LGG. We established two prediction models for survival status using xgboost and random forest algorithms and applied the ROSE algorithm to balance the dataset to improve model performance.
Collapse
Affiliation(s)
- Shaocai Hao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Neurosurgery, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Maoxiang Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qin Li
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Lilu Shu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China.
| | - Guangshan Hao
- Department of Neurosurgery, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China.
| |
Collapse
|
2
|
Liu X, Ma Z, Zhang X, Li S, An J, Luo Z. Research Progress of Long Non-coding RNA-ZFAS1 in Malignant Tumors. Cell Biochem Biophys 2024:10.1007/s12013-024-01441-3. [PMID: 39060915 DOI: 10.1007/s12013-024-01441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Long non-coding RNAs (lncRNAs), although incapable of encoding proteins, play crucial roles in multiple layers of gene expression regulation, epigenetic modifications, and post-transcriptional regulation. Zinc finger antisense 1 (ZFAS1), a lncRNA located in the 20q13 region of the human genome, exhibits dual functions as an oncogene or tumor suppressor in various human malignancies. ZFAS1 plays a crucial role in cancer progression, metastasis, invasion, apoptosis, cell cycle regulation, and drug resistance through complex molecular mechanisms. Additionally, ZFAS1 has a long half-life of over 16 h, demonstrating exceptional stability, and making it a potential biomarker. This review integrates recent studies on the role and molecular mechanisms of ZFAS1 in malignancies and summarizes its clinical significance. By summarizing the role of ZFAS1 in cancer, we aim to highlight its potential as an anti-cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
3
|
Mehrab Mohseni M, Zamani H, Momeni M, Shirvani-Farsani Z. An update on the molecular mechanisms of ZFAS1 as a prognostic, diagnostic, or therapeutic biomarker in cancers. Discov Oncol 2024; 15:219. [PMID: 38856786 PMCID: PMC11164845 DOI: 10.1007/s12672-024-01078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Zinc finger antisense 1 (ZFAS1), a newly discovered long noncoding RNA, is expressed in various tissues and organs and has been introduced an oncogenic gene in human malignancies. In various cancers, ZFAS1 regulates apoptosis, cell proliferation, the cell cycle, migration, translation, rRNA processing, and spliceosomal snRNP assembly; targets signaling cascades; and interacts with transcription factors via binding to key proteins and miRNAs, with conflicting findings on its effect on these processes. ZFAS1 is elevated in different types of cancer, like colorectal, colon, osteosarcoma, and gastric cancer. Considering the ZFAS1 expression pattern, it also has the potential to be a diagnostic or prognostic marker in various cancers. The current review discusses the mode of action of ZFAS1 in various human cancers and its regulation function related to chemoresistance comprehensively, as well as the potential role of ZFAS1 as an effective and noninvasive cancer-specific biomarker in tumor diagnosis, prognosis, and treatment. We expected that the current review could fill the current scientific gaps in the ZFAS1-related cancer causative mechanisms and improve available biomarkers.
Collapse
Affiliation(s)
- Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Hedyeh Zamani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Mina Momeni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran.
| |
Collapse
|
4
|
Fattahi M, Alamdari-Palangi V, Rahimi Jaberi K, Ehtiati S, Ojaghi S, Rahimi-Jaberi A, Samavarchi Tehrani S, Dang P, Movahedpour A, Hossein Khatami S. Exosomal long non-coding RNAs in glioblastoma. Clin Chim Acta 2024; 553:117705. [PMID: 38086498 DOI: 10.1016/j.cca.2023.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent primary tumor found in the central nervous system, accounting for 70% of all adult brain tumors. The median overall survival rate is one year post-diagnosis with treatment, and only four months without treatment. Current GBM diagnostic methods, such as magnetic resonance imaging (MRI), surgery, and brain biopsies, have limitations. These include difficulty distinguishing between tumor recurrence and post-surgical necrotic regions, and operative risks associated with obtaining histological samples through direct surgery or biopsies. Consequently, there is a need for rapid, inexpensive, and minimally invasive techniques for early diagnosis and improved subsequent treatment. Research has shown that tumor-derived exosomes containing various long non-coding RNAs (lncRNAs) play critical regulatory roles in immunomodulation, cancer metastasis, cancer development, and drug resistance in GBM. They regulate genes that enhance cancer growth and progression and alter the expression of several key signaling pathways. Due to the specificity and sensitivity of exosomal lncRNAs, they have the potential to be used as biomarkers for early diagnosis and prognosis, as well as to monitor a patient's response to chemotherapy for GBM. In this review, we discuss the role of exosomal lncRNAs in the pathogenesis of GBM and their potential clinical applications for early diagnosis.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ojaghi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi-Jaberi
- Department of Neurology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Phuyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Peng L, Huang L, Su Q, Tian G, Chen M, Han G. LDA-VGHB: identifying potential lncRNA-disease associations with singular value decomposition, variational graph auto-encoder and heterogeneous Newton boosting machine. Brief Bioinform 2023; 25:bbad466. [PMID: 38127089 PMCID: PMC10734633 DOI: 10.1093/bib/bbad466] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in various biological processes and have close linkages with diseases. In vivo and in vitro experiments have validated many associations between lncRNAs and diseases. However, biological experiments are time-consuming and expensive. Here, we introduce LDA-VGHB, an lncRNA-disease association (LDA) identification framework, by incorporating feature extraction based on singular value decomposition and variational graph autoencoder and LDA classification based on heterogeneous Newton boosting machine. LDA-VGHB was compared with four classical LDA prediction methods (i.e. SDLDA, LDNFSGB, IPCARF and LDASR) and four popular boosting models (XGBoost, AdaBoost, CatBoost and LightGBM) under 5-fold cross-validations on lncRNAs, diseases, lncRNA-disease pairs and independent lncRNAs and independent diseases, respectively. It greatly outperformed the other methods with its prominent performance under four different cross-validations on the lncRNADisease and MNDR databases. We further investigated potential lncRNAs for lung cancer, breast cancer, colorectal cancer and kidney neoplasms and inferred the top 20 lncRNAs associated with them among all their unobserved lncRNAs. The results showed that most of the predicted top 20 lncRNAs have been verified by biomedical experiments provided by the Lnc2Cancer 3.0, lncRNADisease v2.0 and RNADisease databases as well as publications. We found that HAR1A, KCNQ1DN, ZFAT-AS1 and HAR1B could associate with lung cancer, breast cancer, colorectal cancer and kidney neoplasms, respectively. The results need further biological experimental validation. We foresee that LDA-VGHB was capable of identifying possible lncRNAs for complex diseases. LDA-VGHB is publicly available at https://github.com/plhhnu/LDA-VGHB.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
- College of Life Sciences and Chemistry, Hunan University of Technology, 412007, Hunan, China
| | - Liangliang Huang
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
| | - Qiongli Su
- Department of Pharmacy, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, 412007, Hunan, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd, China, 100102, Beijing, China
| | - Min Chen
- School of Computer Science, Hunan Institute of Technology, 421002, No. 18 Henghua Road, Zhuhui District, Hengyang, Hunan, China
| | - Guosheng Han
- School of Mathematics and Computational Science, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
| |
Collapse
|
6
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
- Dexter Hoi Long Leung
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
7
|
Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, Zhou X. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol 2023; 39:1099-1118. [PMID: 34697729 DOI: 10.1007/s10565-021-09665-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To probe the performance of miR-337-3p on the facet joint osteoarthritis (FJOA) and its underlying mechanism. METHODS qRT-PCR and Western blot were utilized to analyze the levels of miR-337-3p and DUSP1 in the synovial tissues from 36 FJOA patients and 10 healthy controls. The human synovial fibroblasts of FJOA were isolated and cultured followed by cell transfection. Then, cells were exposed to 10 ng/mL of IL-1β to induce inflammatory response of synovial fibroblasts. The alternation on cell biological function in cell models was determined. The binding of miR-337-3p and SKP2 was predicted by StarBase, TargetScan, DIANA-microT and miRmap, and further verified by RIP assay and dual-luciferase reporter assay. Co-IP experiment and ubiquitination assay were used to display the binding of SKP2 and DUSP1 as well as the ubiquitination and degradation of DUSP1. After that, the FJOA rat model was established and miR-337-3p mimic or negative control was given to rats by tail vein injection. The pathological changes of synovial tissues, synovitis score, and inflammation level in rats were assessed. RESULTS The low expressions of miR-337-3p and DUSP1 were noticed in the synovial tissues of FJOA patients and in IL-1β-induced synovial fibroblasts, and highly expressed p-p38 MAPK was noticed. Upregulation of miR-337-3p/DUSP1 or downregulation of SKP2 inhibited IL-1β-induced proliferation and inflammatory response of synovial fibroblasts. SKP2 was the target gene of miR-337-3p, and SKP2 induced the ubiquitination and degradation of DUSP1. MiR-337-3p exerted a protective effect on FJOA rats by alleviating damage of rat synovial tissues, promoting cell apoptosis and repressing inflammatory response. CONCLUSION MiR-337-3p plays a protective role in FJOA by negatively targeting SKP2 to suppress DUSP1 ubiquitination and inactivate the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shengsheng Jian
- Department of Orthopedics, the Third Affiliated Hospital (the Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Dixin Luo
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Wangyang Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Hui Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Li Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Xiaozhong Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China.
| |
Collapse
|
8
|
Liu M, Chen MY, Huang JM, Liu Q, Wang L, Liu R, Yang N, Huang WH, Zhang W. LncRNA weighted gene co-expression network analysis reveals novel biomarkers related to prostate cancer metastasis. BMC Med Genomics 2022; 15:256. [PMID: 36514044 PMCID: PMC9745985 DOI: 10.1186/s12920-022-01410-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Most prostate cancer patients die from metastasis and lack accurate efficacious biomarkers to monitor the disease behavior, optimize treatment and assess prognosis. Herein, we aimed to identify meaningful lncRNA biomarkers associated with prostate cancer metastatic progression. METHODS By repurposing microarray probes, 11,624 lncRNAs in prostate cancer were obtained from Gene Expression Omnibus database (GSE46691, N = 545; GSE29079, N = 235; GSE94767, N = 130). Weighted gene co-expression network analysis was applied to determine the co-expression lncRNA network pertinent to metastasis. Hub lncRNAs were screened. RNA-seq and clinical data from the Cancer Genome Atlas prostate cancer (TCGA-PRAD) cohort (N = 531) were analyzed. Transwell assay and bioinformatic analysis were performed for mechanism research. RESULTS The high expression levels of nine hub lncRNAs (FTX, AC005261.1, NORAD, LINC01578, AC004542.2, ZFAS1, EBLN3P, THUMPD3-AS1, GAS5) were significantly associated with Gleason score and increased probability of metastatic progression. Among these lncRNAs, ZFAS1 had the consistent trends of expression in all of the analysis from different cohorts, and the Kaplan-Meier survival analyses showed higher expression of ZFAS1 was associated with shorter relapse free survival. In-vitro studies confirmed that downregulation of ZFAS1 decreased prostate cancer cell migration. CONCLUSION We offered some new insights into discovering lncRNA markers correlated with metastatic progression of prostate cancer using the WGCNA. Some may serve as potential prognostic biomarkers and therapeutic targets for advanced metastatic prostate cancer.
Collapse
Affiliation(s)
- Miao Liu
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Man-Yun Chen
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Jia-Meng Huang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Qian Liu
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Lin Wang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Rong Liu
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Nian Yang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Wei-Hua Huang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| | - Wei Zhang
- grid.216417.70000 0001 0379 7164Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008 Changsha, People’s Republic of China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, 410078 Changsha, People’s Republic of China ,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Hunan 410008 Changsha, People’s Republic of China
| |
Collapse
|
9
|
Molecular pathways in sepsis-induced cardiomyocyte pyroptosis: Novel finding on long non-coding RNA ZFAS1/miR-138-5p/SESN2 axis. Immunol Lett 2021; 238:47-56. [PMID: 34271014 DOI: 10.1016/j.imlet.2021.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE ZNFX1 antisense RNA1 (ZFAS1) has been emerged as a tumor oncogene or suppressor. However, understanding the biological role and underlying molecular mechanism of ZFAS1 in sepsis induced myocardial injury (SIMI) requires more evidence. This study was assigned to probe the effect of lncRNA ZFAS1 on sepsis-induced pyroptosis in cardiomyocytes and its underlying mechanism. METHODS Serums of 22 patients with sepsis-induced myocardial injury (SIMI) and 24 healthy controls were collected to determine the expression levels of ZFAS1 and miR-138-5p. Cardiomyocytes (H9C2) or rats were treated by lipopolysaccharide (LPS) to establish in vivo and in vitro sepsis models. H&E staining was applied to observe myocardial injury of rats. The interactions between ZFAS1 and miR-138-5p as well as miR-138-5p and SESN2 were determined by dual-luciferase reporter gene assay and RNA pull-down assay. TUNEL staining was applied to inspect apoptosis level and CCK-8 to measure cell viability. The mRNA levels of ZFAS1, miR-138-5p and SESN2 were measured by qRT-PCR, while the protein expressions of SESN2 and pyroptosis-related proteins (Caspase-1, ASC and NLRP3) were assessed by Western blotting. Levels of inflammatory factors (TNF-α, IL-1β, IL-6 and IL-18) were evaluated by ELISA. RESULTS Patients with SIMI had suppressed ZFAS1 and increased miR-138-5p expression when compared with those in healthy controls. LPS treatment in rats triggered myocardial injury accompanied by interstitial edema and moderate inflammatory cell infiltration. Besides, LPS caused elevated cell apoptosis rate and enhanced cell pyroptosis and inflammation in sepsis cell models. However, ZFAS1 overexpression or SESN2 overexpression in LPS induced rats and in H9C2 cells had meliorated myocardial injury and inflammatory response, indicating that ZFAS1 and SESN2 can inhibit sepsis-induced pyroptosis of cardiomyocytes. MiR-138-5p is a target gene of ZFAS1, while miR-138-5p can negatively mediate SESN2. ZFAS1 alleviated sepsis induced cardiomyocyte pyroptosis by exerting competing endogenous RNA (ceRNA) function to indirectly regulate SESN2, which evidenced by loss and gain functions of ZFAS1 and SESN2. CONCLUSION LncRNA ZFAS1 serves as a ceRNA of miR-138-5p to up-regulate the expression of SESN2, thereby ameliorating sepsis-induced cardiomyocyte pyroptosis.
Collapse
|
10
|
Silencing long non-coding RNA zinc finger antisense 1 restricts secondary cerebral edema and neuron injuries after traumatic brain injury. Neurosci Lett 2021; 756:135958. [PMID: 34000346 DOI: 10.1016/j.neulet.2021.135958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the interaction of long non-coding RNA zinc finger antisense 1 (lncRNA ZFAS1) in secondary cerebral edema (CE) and neuron injuries after traumatic brain injury (TBI) in a mouse model. METHODS TBI mouse models was established by free-fall strike. Adeno-associated virus-short hairpin-ZFAS1 was administrated into mice via intracerebral injection to downregulate lncRNA ZFAS1. LncRNA ZFAS1 in mouse brain was examined. Neurological severity score (NSS), cerebral water content (CWC) and lesion volume were measured. The number of TUNEL-positive cells in brain tissue was accessed. Bax and cleaved caspase-3 in brain tissues were measured by western blot analysis, and pro-inflammatory factor levels were detected. RESULTS LncRNA ZFAS1 expression was upregulated in mouse brain tissues 3 days after TBI modelling. After the knockdown of lncRNA ZFAS1, NSS, CWC and lesion volume were decreased, apoptotic gene levels were decreased and pro-inflammatory cytokine levels were reduced, suggesting that lncRNA ZFAS1 knockdown could alleviate TBI-induced brain injuries in mice. CONCLUSION This study demonstrated that silencing lncRNA ZFAS1 inhibited TBI by quenching apoptosis, reducing inflammatory response and improving the recovery of neurological function in TBI mice. LncRNA ZFAS1 might function as a possible curative management in secondary CE and neuron injury in TBI mice.
Collapse
|
11
|
Chaudhary R. Potential of long non-coding RNAs as a therapeutic target and molecular markers in glioblastoma pathogenesis. Heliyon 2021; 7:e06502. [PMID: 33786397 PMCID: PMC7988331 DOI: 10.1016/j.heliyon.2021.e06502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GB) is by far the most hostile type of malignant tumor that primarily affects the brain and spine, derived from star-shaped glial cells that are astrocytes and oligodendrocytes. Despite of significant efforts in recent years in glioblastoma research, the clinical efficacy of existing medical intervention is still limited and very few potential diagnostic markers are available. Long non-coding RNAs (lncRNAs) that lacks protein-coding capabilities were previously thought to be "junk sequences" in mammalian genomes are quite indispensible epigenetic regulators that can positively or negatively regulate gene expression and nuclear architecture, with significant roles in the initiation and development of tumors. Nevertheless, the precise mechanism of these distortedly expressed lncRNAs in glioblastoma pathogenesis is not yet fully understood. Since the advent of high-throughput sequencing technologies, more and more research have elucidated that lncRNAs are one of the most promising prognostic biomarkers and therapeutic targets for glioblastoma. In this paper, I briefly outlined the existing findings of lncRNAs. And also summarizes the profiles of different lncRNAs that have been broadly classified in glioblastoma research, with emphasis on both their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| |
Collapse
|
12
|
He C, Su C, Zhang W, Zhou Q, Shen X, Yang J, Shi N. Modulatory Potential of LncRNA Zfas1 for Inflammation and Neuronal Apoptosis in Temporal Lobe Epilepsy. Yonsei Med J 2021; 62:215-223. [PMID: 33635011 PMCID: PMC7934098 DOI: 10.3349/ymj.2021.62.3.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study aimed to elucidate whether lncRNA ZFAS1 is involved in neuronal apoptosis and inflammation in temporal lobe epilepsy (TLE). MATERIALS AND METHODS Ninety-six TLE patients were recruited, and their peripheral venous blood was gathered to determine Zfas1 expression with polymerase chain reaction. Neurons were separated from hippocampal tissue of newborn SD rats, and si-Zfas1 or pcDNA3.1-Zfas1 was transfected into the neurons. Inflammatory cytokines released by neurons were determined, and neuronal activities were evaluated through MTT assay, colony formation assay, and flow cytometry. RESULTS Serum levels of Zfas1 were higher in TLE patients than in healthy controls (p<0.05). Furthermore, Zfas1 expression in neurons was raised by pcDNA3.1-Zfas1 and declined after silencing of Zfas1 (p<0.05). Transfection of pcDNA-Zfas1 weakened the viability and proliferation of neurons and increased neuronal apoptosis (p<0.05). Meanwhile, pcDNA3.1-Zfas1 transfection promoted lipopolysaccharide-induced release of cytokines, including tumor necrosis factor-α, interleukin (IL)-1, IL-6, and intercellular adhesion molecule-1 (p<0.05), and boosted NF-κB activation by elevating the expression of NF-κB p65, pIκBα, and IKKβ in neurons (p<0.05). CONCLUSION Our results indicated that lncRNA ZFAS1 exacerbates epilepsy development by promoting neuronal apoptosis and inflammation, implying ZFAS1 as a promising treatment target for epilepsy.
Collapse
Affiliation(s)
- Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China.
| | - Caixia Su
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Qin Zhou
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Xu Shen
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Junjie Yang
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Naixian Shi
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| |
Collapse
|
13
|
Sun Y, Gao X, Li P, Song L, Shi L. LncRNA ZFAS1, as a poor prognostic indicator, promotes cell proliferation and epithelial-mesenchymal transition in endometrial carcinoma. Per Med 2020; 18:43-53. [PMID: 33151128 DOI: 10.2217/pme-2020-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Long noncoding RNA Zinc finger nuclear transcription factor, X-box binding 1-type containing 1 antisense RNA 1 (ZFAS1) has been reported to be an oncogene in various tumors. However, the role of ZFAS1 in endometrial carcinoma (EC) are not fully determined. Methods & results: Here, we found ZFAS1 expression was significantly upregulated in EC patients, which was significantly associated with International Federation of Gynecology and Obstetrics stage, histological grade, myometrial invasion and poor prognosis. The loss-of-function assays showed that knockdown of ZFAS1 significantly suppressed the proliferation, G1/S transition, migration and invasion in EC cells. Moreover, knockdown of ZFAS1 obviously downregulated the expression of CDK4, Cyclin D1 and N-cadherin, but upregulated E-cadherin expression. Conclusion: Collectively, these results suggest that ZFAS1 might be used as potential therapeutic targets for EC treatment.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Gynecology, The Second Affiliated Hospital Harbin Medical University, Harbin, Heilongjiang, PR China.,Department of Gynecology & Obstetrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, PR China
| | - Xuan Gao
- Department of Gynecology & Obstetrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, PR China
| | - Peiling Li
- Department of Gynecology, The Second Affiliated Hospital Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Ling Song
- Department of Gynecology & Obstetrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, PR China
| | - Lei Shi
- Department of Gynecology & Obstetrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, PR China
| |
Collapse
|
14
|
Zottel A, Šamec N, Videtič Paska A, Jovčevska I. Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers (Basel) 2020; 12:cancers12071842. [PMID: 32650527 PMCID: PMC7409010 DOI: 10.3390/cancers12071842] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most aggressive and lethal primary brain malignancy, with an average patient survival from diagnosis of 14 months. Glioblastoma also usually progresses as a more invasive phenotype after initial treatment. A major step forward in our understanding of the nature of glioblastoma was achieved with large-scale expression analysis. However, due to genomic complexity and heterogeneity, transcriptomics alone is not enough to define the glioblastoma “fingerprint”, so epigenetic mechanisms are being examined, including the noncoding genome. On the basis of their tissue specificity, long noncoding RNAs (lncRNAs) are being explored as new diagnostic and therapeutic targets. In addition, growing evidence indicates that lncRNAs have various roles in resistance to glioblastoma therapies (e.g., MALAT1, H19) and in glioblastoma progression (e.g., CRNDE, HOTAIRM1, ASLNC22381, ASLNC20819). Investigations have also focused on the prognostic value of lncRNAs, as well as the definition of the molecular signatures of glioma, to provide more precise tumor classification. This review discusses the potential that lncRNAs hold for the development of novel diagnostic and, hopefully, therapeutic targets that can contribute to prolonged survival and improved quality of life for patients with glioblastoma.
Collapse
|
15
|
Duan R, Li C, Wang F, Han F, Zhu L. The Long Noncoding RNA ZFAS1 Potentiates the Development of Hepatocellular Carcinoma via the microRNA-624/MDK/ERK/JNK/P38 Signaling Pathway. Onco Targets Ther 2020; 13:4431-4444. [PMID: 32547074 PMCID: PMC7250709 DOI: 10.2147/ott.s246278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background A long noncoding RNA (lncRNA), ZNFX1 antisense RNA 1 (ZFAS1), was increased in multiple cancers, including hepatocellular carcinoma (HCC), resulting in malignancy development and progression. However, the mechanisms involving the interaction between ZFAS1 and microRNA-624 (miRNA-624) remain largely unknown. Therefore, the goal of this study was to probe the functional role of ZFAS1 in the development of HCC and its underlying mechanism. Methods Firstly, differentially expressed lncRNAs in HCC tissues were screened out by microarray. Subsequently, the prognostic effect of ZFAS1 patients with HCC was analyzed by the Kaplan-Meier analysis and The Cancer Genome Atlas database. ZFAS1 regulation on miRNA-624 was determined after si-ZFAS1 and/or miRNA-624 inhibitor were transfected into HepG2 and SMMC7721 cell lines. Finally, the effects of ZFAS1 on the growth and metastasis of HCC were observed by in vivo tumorigenesis and metastasis tests. Results ZFAS1 was overexpressed in HCC tissues and cells and indicated worse prognosis and shorter survival in patients with HCC. Silencing of ZFAS1 inhibited the malignancy of HCC cells, but miR-624 inhibitor could partially reverse the repressive role of si-ZFAS1. Moreover, ZFAS1 induced the extracellular-regulated protein kinases/c-Jun N-terminal kinase (ERK/JNK)/P38 pathway by binding to midkine (MDK) through miR-624, thus promoting the occurrence of HCC. Conclusion Collectively, ZFAS1 depletion inhibited the occurrence of HCC by downregulating the MDK/ERK/JNK/P38 pathway through restoring miR-624 expression. Inhibition of ZFAS1 may act as an innovative target to suppress occurrence in HCC.
Collapse
Affiliation(s)
- Rui Duan
- Department of Hepatological Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, People's Republic of China
| | - Caiyan Li
- Department of Clinical Laboratory, The Second People's Hospital of Jingmen, Jingmen 448000, Hubei, People's Republic of China
| | - Fan Wang
- Department of Hepatological Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, People's Republic of China
| | - Fei Han
- Department of Oncology, Affiliated Hospital of Chongqing Medical University, Chongqing 400000, People's Republic of China
| | - Ling Zhu
- Department of Hepatological Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, People's Republic of China
| |
Collapse
|
16
|
Pan J, Xu X, Wang G. lncRNA ZFAS1 Is Involved in the Proliferation, Invasion and Metastasis of Prostate Cancer Cells Through Competitively Binding to miR-135a-5p. Cancer Manag Res 2020; 12:1135-1149. [PMID: 32104094 PMCID: PMC7025677 DOI: 10.2147/cmar.s237439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Prostate cancer (PCa) is a common malignant tumor in men. lncRNA ZFAS1 plays a carcinogenic role in many types of cancer; however, its potential role in PCa remains unclear. The current study aimed to determine the expression and function of ZFAS1 in PC. Methods The ZFAS1 expression in PC tissues and cells was determined by quantitative polymerase chain reaction (qPCR). SiZFAS1, miR-135a-5p mimic and miR-135a-5p inhibitor were transfected into PCa cells. The direct target of ZFAS1 was predicted by Starbase and verified by dual-luciferase reporter. Cell viability, proliferation, apoptosis, migration and invasion of the PCa cells were determined by cell counting kit-8, clone formation assay, flow cytometer, scratch and Transwell assay, respectively. The expression levels of related proteins and mRNAs were determined by Western blotting and qPCR. Results ZFAS1 expression was up-regulated in PCa cells and tissues. ZFAS1 could competitively bind to miR-135a-5p in PCa cells, and down-regulation of ZFAS1 inhibited cell viability, proliferation, migration, invasion of PCa cells and the occurrence of epithelial-mesenchymal transformation (EMT) and promoted apoptosis of PCa cells and increased the miR-135a-5p expression. Moreover, the function of miR-135a-5p mimic in PCa cells was consistent with ZFAS1 knockdown, while the function of miR-135a-5p inhibitor was opposite to that of miR-135a-5p mimic in PCa cells. The results showed that knocking down ZFAS1 could attenuate the effects of miR-135a-5p inhibitor on cell proliferation, invasion and EMT of PCa cells. Conclusion Knocking down ZFAS1 could inhibit the proliferation, invasion and metastasis of PCa cells through regulating miR-135a-5p expression.
Collapse
Affiliation(s)
- Jiaqiang Pan
- Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xingyan Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Guangliang Wang
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
17
|
DGCR8/ZFAT-AS1 Promotes CDX2 Transcription in a PRC2 Complex-Dependent Manner to Facilitate the Malignant Biological Behavior of Glioma Cells. Mol Ther 2019; 28:613-630. [PMID: 31813799 DOI: 10.1016/j.ymthe.2019.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022] Open
Abstract
Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells. DGCR8 or CDX2 knockdown or ZFAT-AS1 overexpression suppressed glioma cell proliferation, migration, and invasion and facilitated apoptosis. DGCR8 might decrease ZFAT-AS1 expression by attenuating its stability in a manner of inducing its cleavage. Importantly, ZFAT-AS1 could inhibit CDX2 transcription by mediating the methylation of histone H3 on lysine 27 (H3K27me3) modification induced by PRC2 in the CDX2 promoter region. In addition, CDX2 transcriptionally activated DGCR8 expression by binding to its promoter regions, forming a positive feedback loop of DGCR8/ZFAT-AS1/CDX2. In conclusion, DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells.
Collapse
|
18
|
Guo ZW, Meng Y, Zhai XM, Xie C, Zhao N, Li M, Zhou CL, Li K, Liu TC, Yang XX, Wu YS. Translated Long Non-Coding Ribonucleic Acid ZFAS1 Promotes Cancer Cell Migration by Elevating Reactive Oxygen Species Production in Hepatocellular Carcinoma. Front Genet 2019; 10:1111. [PMID: 31781169 PMCID: PMC6861293 DOI: 10.3389/fgene.2019.01111] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
Micropeptides (≤100 amino acids) are essential regulators of physiological and pathological processes, which can be encoded by small open reading frames (smORFs) derived from long non-coding RNAs (lncRNAs). Recently, lncRNA-encoded micropeptides have been shown to have essential roles in tumorigenesis. Since translated smORF identification remains technically challenging, little is known of their pathological functions in cancer. Therefore, we created classifiers to identify translated smORFs derived from lncRNAs based on ribosome-protected fragment sequencing and machine learning methods. In total, 537 putative translated smORFs were identified and the coding potential of five smORFs was experimentally validated via green fluorescent protein-tagged protein generation and mass spectrometry. After analyzing 11 lncRNA expression profiles of seven cancer types, we identified one validated translated lncRNA, ZFAS1, which was significantly up-regulated in hepatocellular carcinoma (HCC). Functional studies revealed that ZFAS1 can promote cancer cell migration by elevating intracellular reactive oxygen species production by inhibiting nicotinamide adenine dinucleotide dehydrogenase expression, indicating that translated ZFAS1 may be an essential oncogene in the progression of HCC. In this study, we systematically identified translated smORFs derived from lncRNAs and explored their potential pathological functions in cancer to improve our comprehensive understanding of the building blocks of living systems
Collapse
Affiliation(s)
- Zhi-Wei Guo
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Yu Meng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Ming Zhai
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Chen Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Min Li
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Chun-Lian Zhou
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Kun Li
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Tian-Cai Liu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Xue-Xi Yang
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Ying-Song Wu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Li X, Luo Y, Liu L, Cui S, Chen W, Zeng A, Shi Y, Luo L. The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR-150-5p/PLP2 axis. J Cell Physiol 2019; 235:2937-2946. [PMID: 31535380 DOI: 10.1002/jcp.29199] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yidan Luo
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Liang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sitong Cui
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangsheng Luo
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Yang G, Han B, Feng T. ZFAS1 knockdown inhibits viability and enhances cisplatin cytotoxicity by up-regulating miR-432-5p in glioma cells. Basic Clin Pharmacol Toxicol 2019; 125:518-526. [PMID: 31246330 DOI: 10.1111/bcpt.13286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) zinc finger antisense 1 (ZFAS1) is a novel vital oncogenic lncRNA that is dysregulated in various types of cancers, including glioma. According to TargetScan prediction, miR-432-5p is a target of ZFAS1. Herein, we aimed to determine whether there was a correlation between ZFAS1 and miR-432-5p and to explore their roles in glioma. METHODS The expression levels of ZFAS1 and microRNA (miR)-432-5p in clinical tissues and cell lines were measured using RT-qPCR. Cell viability was detected using MTT assay. Cell apoptosis was examined using flow cytometry. The association between ZFAS1 and miR-432-5p was confirmed using luciferase reporter and RNA pull-down assays. RESULTS Zinc finger antisense 1 expression was up-regulated, while miR-432-5p expression was down-regulated in both glioma tissues and cells. Knockdown of ZFAS1 and miR-432-5p overexpression inhibited cell viability and enhanced the chemosensitivity of glioma cells to cisplatin. MiR-432-5p was a direct target of ZFAS1 in glioma cells. Inhibition of miR-432-5p blocked the effects of ZFAS1 knockdown on cell viability and cisplatin sensitivity. CONCLUSIONS Knockdown of ZFAS1 inhibited the viability and enhanced cisplatin sensitivity via targeting miR-432-5p in glioma cells.
Collapse
Affiliation(s)
- Gongli Yang
- Department of Neurosurgery, Shanxian Central Hospital, Heze, China
| | - Banghua Han
- Department of Neurosurgery, Shanxian Central Hospital, Heze, China
| | - Tao Feng
- Department of Neurosurgery, Shanxian Central Hospital, Heze, China
| |
Collapse
|
21
|
Kolenda T, Rutkowski P, Michalak M, Kozak K, Guglas K, Ryś M, Galus Ł, Woźniak S, Ługowska I, Gos A, Teresiak A, Mackiewicz A, Lamperska K, Mackiewicz J. Plasma lncRNA expression profile as a prognostic tool in BRAF-mutant metastatic melanoma patients treated with BRAF inhibitor. Oncotarget 2019; 10:3879-3893. [PMID: 31231466 PMCID: PMC6570476 DOI: 10.18632/oncotarget.26989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are dysregulated in many cancer types. Abnormal baseline levels of these lncRNAs display diagnostic and prognostic potential in cancer patients. The aim of this study was to evaluate the prognostic value of plasma lncRNAs in BRAF-mutant advanced melanoma patients treated with a BRAF inhibitor. Total RNA was isolated from plasma samples collected from 58 advanced BRAF-mutant melanoma patients and 15 healthy donors. The expression levels of 90 lncRNAs were estimated using the LncProfiler qPCR Array Kit (SBI) and LightCycler 96 (Roche). LncRNA expression levels correlated with responses to the BRAF inhibitor (vemurafenib) treatment. The patients were stratified into three groups based on their lncRNA levels with various lncRNA expressions (low, medium, and high). A Cox proportional hazards regression model was used to determine the lncRNAs that were significantly associated with both progression-free and overall survivals (PFS and OS, respectively) in patients receiving vemurafenib. The expression level of 12 lncRNAs was down-regulated, while five lncRNAs were up-regulated in melanoma patients compared to healthy donors. Kaplan-Meier analysis showed that upregulation or downregulation of 11 and 16 different lncRNAs were associated with longer median PFS and OS, respectively. Further analysis demonstrated that the baseline lncRNAs for IGF2AS, anti-Peg11, MEG3, Zeb2NAT are independent prognostic factors in BRAF-mutant advanced melanoma patients treated with vemurafenib. Evaluation of plasma lncRNAs expression level for advanced melanoma diagnosis and prognosis evaluation appears to be a safe and valuable method; however, this method requires further validation in larger cohorts and randomized trials.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, University of Medical Sciences, Poznan, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Kacper Guglas
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcel Ryś
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Sebastian Woźniak
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Ługowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland.,Early Phase Clinical Trials Unit, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Aleksandra Gos
- Department of Translational Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
22
|
Kolenda T, Guglas K, Kopczyńska M, Teresiak A, Bliźniak R, Mackiewicz A, Lamperska K, Mackiewicz J. Oncogenic Role of ZFAS1 lncRNA in Head and Neck Squamous Cell Carcinomas. Cells 2019; 8:cells8040366. [PMID: 31010087 PMCID: PMC6523746 DOI: 10.3390/cells8040366] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with high mortality. The identification of specific HNSCC biomarkers will increase treatment efficacy and limit the toxicity of current therapeutic strategies. Long non-coding RNAs (lncRNAs) are promising biomarkers. Accordingly, here we investigate the biological role of ZFAS1 and its potential as a biomarker in HNSCC. Methods: The expression level of ZFAS1 in HNSCC cell lines was analyzed using qRT-PCR. Based on the HNSCC TCGA data, the ZFAS1 expression profile, clinicopathological features, and expression of correlated genes were analyzed in patient tissue samples. The selected genes were classified according to their biological function using the PANTHER tool. The interaction between lncRNA:miRNA and miRNA:mRNA was tested using available online tools. All statistical analyses were accomplished using GraphPad Prism 5. Results: The expression of ZFAS1 was up-regulated in the metastatic FaDu cell line relative to the less aggressive SCC-25 and SCC-040 and dysplastic DOK cell lines. The TCGA data indicated an up-regulation of ZFAS1 in HNSCCs compared to normal tissue samples. The ZFAS1 levels typically differed depending on the cancer stage and T-stage. Patients with a lower expression of ZFAS1 presented a slightly longer disease-free survival and overall survival. The analysis of genes associated with ZFAS1, as well its targets, indicate that they are linked with crucial cellular processes. In the group of patients with low expression of ZFAS1, we detected the up-regulation of suppressors and down-regulation of genes associated with epithelial-to-mesenchymal transition (EMT) process, metastases, and cancer-initiating cells. Moreover, the negative correlation between ZFAS1 and its host gene, ZNFX1, was observed. The analysis of interactions indicated that ZFAS1 has a binding sequence for miR-150-5p. The expression of ZFAS1 and miR-150-5p is negatively correlated in HNSCC patients. miR-150-5p can regulate the 3′UTR of EIF4E mRNA. In the group of patients with high expression of ZFAS1 and low expression of miR-150-5p, we detected an up-regulation of EIF4E. Conclusions: In HNSCC, ZFAS1 displays oncogenic properties, regulates important processes associated with EMT, cancer-initiating cells, and metastases, and might affect patients’ clinical outcomes. ZFAS1 likely regulates the cell phenotype through miR-150-5p and its downstream targets. Following further validation, ZFAS1 might prove a new and valuable biomarker.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091 Warszawa, Poland.
| | - Magda Kopczyńska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland.
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, Room 5025, 61-866 Poznan, Poland.
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland.
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786 Poznan, Poland.
- Department of Biology and Environmental Sciences, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland.
| |
Collapse
|
23
|
LncRNA CASC7 inhibits the progression of glioma via regulating Wnt/β-catenin signaling pathway. Pathol Res Pract 2019; 215:564-570. [DOI: 10.1016/j.prp.2019.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/26/2018] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
|
24
|
Feng LL, Shen FR, Zhou JH, Chen YG. Expression of the lncRNA ZFAS1 in cervical cancer and its correlation with prognosis and chemosensitivity. Gene 2019; 696:105-112. [PMID: 30738960 DOI: 10.1016/j.gene.2019.01.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the expression of the lncRNA ZFAS1 in cervical cancer and its relationship with patient prognosis and cervical cancer cell chemosensitivity. METHODS The expression of ZFAS1 in cervical cancer tissues and cell lines was detected by qRT-PCR. The cervical cancer CaSki and the HeLa cell lines were transfected to be divided into Blank, siR-Control, and siR-ZFAS1 groups. MTT, wound-healing, and transwell assays were used to evaluate cell biological function. Cisplatin with different concentrations was used to treat cells in different transfection groups, and MTT assays were used to detect the cell growth inhibition rate and the half-inhibitory concentration (IC50) of cisplatin was measured. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was used to investigate the effects of siR-ZFAS1 on the chemosensitivity to cisplatin. RESULTS ZFAS1 was significantly upregulated in cervical cancer tissues and cell lines, and increased ZFAS1 levels led to poor prognoses in patients. In addition, cells in the siR-ZFAS1 group showed remarkably reduced ZFAS1 expression as well as cell proliferation, invasion and migration. After being treated with cisplatin at different concentrations, cells in the siR-ZFAS1 group had dramatically increased cell growth inhibition and apoptosis but lower cisplatin IC50s. In addition, siR-ZFAS1 reduced the volumes and weights of tumors in nude mice treated with cisplatin and enhanced the chemosensitivity of cervical cancer cells to cisplatin. CONCLUSION The lncRNA ZFAS1 was upregulated in cervical cancer tissues, and its high expression indicated a poor prognosis. Silencing ZFAS1 may inhibit cell proliferation, migration and invasion and enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Lan-Lan Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - Fang-Rong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - Jin-Hua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - You-Guo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China.
| |
Collapse
|
25
|
Wang X, Jin Q, Wang X, Chen W, Cai Z. LncRNA ZFAS1 promotes proliferation and migration and inhibits apoptosis in nasopharyngeal carcinoma via the PI3K/AKT pathway in vitro. Cancer Biomark 2019; 26:171-182. [PMID: 31403940 DOI: 10.3233/cbm-182080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Increasing evidence shows that long non-coding RNAs (lncRNAs) play a key role in the development of various cancers. Zinc finger antisense 1 (ZFAS1) is a novel lncRNA with previously demonstrated associations with several types of cancer. Here we examined the expression and potential function of the ZFAS1 in nasopharyngeal carcinoma (NPC). METHODS We detected ZFAS1 expression in GSE12452, a human microarray dataset, and NPC cell lines. Small interfering RNA against ZFAS1 was used to elucidate the cellular functions of ZFAS1 using MTT, colony formation, cell cycle, cell apoptosis, transwell invasion and migration and western blot assays. An activator of the PI3K/AKT signaling pathway (740Y-P) was used to determine the contribution of PI3K/AKT. RESULTS ZFAS1 was significantly upregulated in NPC tissues and cell lines. Silencing ZFAS1 significantly inhibited cell proliferation and invasion, arrested cell cycle progression and promoted cell apoptosis, as well as reduced epithelial-mesenchymal transition. Moreover, 740Y-P could rescue the effects of ZFAS1 knockdown on proliferation, apoptosis and invasion in 5-8F cells. CONCLUSIONS ZFAS1 might play an oncogenic role in NPC and facilitate cell proliferation and invasion via the PI3K/AKT signaling pathway in NPC cells.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaozhi Jin
- Taizhou Minicipal Hospital, Taizhou, Zhejiang, China
| | - Xue Wang
- Yuhang District First People's Hospital, Hangzhou, Zhejiang, China
| | - Wubing Chen
- Taizhou Minicipal Hospital, Taizhou, Zhejiang, China
| | - Zhiyi Cai
- Taizhou Minicipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
26
|
Leng Y, Luo Q, Chen X, Chen F, Wang X, Pan Y. Clinicopathological and prognostic significance of zinc finger antisense 1 overexpression in cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e13378. [PMID: 30544408 PMCID: PMC6310591 DOI: 10.1097/md.0000000000013378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND An increasing number of studies have recently highlighted the role of zinc finger antisense 1(ZFAS1) as a prognostic marker in cancers. However, these results remain controversial. Hence, a meta-analysis was conducted to further investigate the effects of ZFAS1 expression on clinicopathological features and survival outcomes. METHOD All eligible studies were searched from PubMed, Embase, Web of Science, and the Cochrane Library. All included articles evaluated the relationship between the expression levels of ZFAS1 and survival, or the range of pathological features in cancer patients. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were computed to evaluate the effect of ZFAS1 expression on overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS). The relationship between ZFAS1 expression and clinicopathological features was determined through pooled odds ratios (ORs) and 95% CIs. RESULTS In total 8 studies, which comprised of 820 patients, were qualified for analysis. Results revealed that the overexpression of ZFAS1 was significantly associated with poor OS (HR = 1.97, 95% CI: 1.53-2.54), worse RFS (HR = 1.95, 95% CI: 1.24-3.04) and worse DFS (HR = 2.35, 95% CI: 1.43-3.88) in cancers. Further subgroup analysis revealed that ZFAS1 overexpression was significantly correlated with poor OS in different cancer types, HR obtain methods and sample sizes. In addition, this meta-analysis revealed that the upregulated expression of ZFAS1 was significantly associated with lymph node metastasis, Tumor Node Metastasis (TNM) stage, and tumor size. CONCLUSIONS This meta-analysis revealed that the expression of ZFAS1 was associated with tumor prognosis. ZFAS1 could be used as a predictor for tumor progression in various cancers.
Collapse
Affiliation(s)
- Yuanxiu Leng
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Qing Luo
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Xumei Chen
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Fang Chen
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Xue Wang
- Department of Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, Zunyi
| | - Yana Pan
- Hematology and Oncology Department, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong Province, Doumen District, Zhuhai,China
| |
Collapse
|
27
|
Jiang X, Yang Z, Li Z. Zinc finger antisense 1: A long noncoding RNA with complex roles in human cancers. Gene 2018; 688:26-33. [PMID: 30503395 DOI: 10.1016/j.gene.2018.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022]
Abstract
Zinc finger antisense 1 (ZFAS1), a newly identified long non-coding RNA, is a transcript antisense to the 5' end of the protein-coding gene zinc finger NFX1-type containing 1 which hosts three C/D-box small nucleolar RNAs (SNORDs) within sequential introns: Snord12, Snord12b, and Snord12c. ZFAS1 is dysregulated and acts as either an oncogene or a tumor suppressor in different human malignancies. ZFAS1 has been implicated in many aspects of carcinogenesis, including proliferation, invasion, metastasis, apoptosis, cell cycle, and drug resistance. The mechanisms underlying the effects of ZFAS1 are complex and involve multiple signaling pathways. In this review, the multiple pathological functions of ZFAS1 in diverse malignancies are systematically reviewed to elucidate the molecular basis of its biological roles and to provide new directions for future research.
Collapse
Affiliation(s)
- Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Zhiwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Liu SQ, Xu CY, Wu WH, Fu ZH, He SW, Qin MB, Huang JA. Sphingosine kinase 1 promotes the metastasis of colorectal cancer by inducing the epithelial‑mesenchymal transition mediated by the FAK/AKT/MMPs axis. Int J Oncol 2018; 54:41-52. [PMID: 30365116 PMCID: PMC6254930 DOI: 10.3892/ijo.2018.4607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
It was demonstrated that Sphingosine kinase 1 (SphK1) promotes tumor progression and confers the malignancy phenotype of colorectal cancer by activating the focal adhesion kinase (FAK) pathway. However, further clarification is required to determine if SphK1 promotes the metastasis of colorectal cancer by inducing epithelial‑mesenchymal transition (EMT), and its mechanisms have not been fully elucidated. Immunohistochemistry staining was used to detect protein expression in normal colonic mucosa tissues and colorectal cancer tissues. Cells were transfected to overexpress SphK1, downregulate SphK1 or downregulate FAK. An MTT assay was used to detect the drug toxicity to cells. Transwell and wound healing assays were used to detect cell migration ability. Reverse transcription‑polymerase chain reaction and western blot analysis were used to detect the expression of mRNA and protein, respectively. Scanning electron microscopy was used to observe the microvilli and pseudopodia of the cells. The analysis of protein expression in 114 human colorectal cancer tissues demonstrated that the expressions of SphK1, FAK, phosphorylated (p)‑FAK, E‑cadherin and vimentin were associated with the metastasis of colorectal cancer. Furthermore, the patients with colorectal cancer with SphK1‑positive cancer demonstrated poorer prognosis compared with SphK1‑negative cancer. FAK knockdown and SphK1 knockdown of human colon cancer RKO cells inhibited the EMT and migrational potency, along with the expression of p‑FAK, p‑protein kinase B (AKT) and matrix metalloproteinase (MMP)2/9. In contrast, SphK1 overexpression promoted EMT, migrational potency, and the expression of p‑FAK, p‑AKT and MMP2/9 in HT29 cells. Additionally, the EMT and migrational potency of SphK1‑overexpressing HT29 cells was suppressed by a FAK inhibitor, and the expression of p‑FAK, p‑AKT and MMP2/9 was suppressed by blocking the FAK pathway. In conclusion, SphK1 promoted the migration and metastasis of colon cancer by inducing EMT mediated by the FAK/AKT/MMPs axis.
Collapse
Affiliation(s)
- Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Chun-Yan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wen-Hong Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Zhen-Hua Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Si-Wei He
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Meng-Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
29
|
He A, He S, Li X, Zhou L. ZFAS1: A novel vital oncogenic lncRNA in multiple human cancers. Cell Prolif 2018; 52:e12513. [PMID: 30288832 PMCID: PMC6430496 DOI: 10.1111/cpr.12513] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of noncoding, endogenous, single‐stranded RNAs longer than 200 nucleotides in length that are transcribed by RNA polymerase II. Mounting evidence has indicated that lncRNAs play key roles in several physiological and pathological processes by modifying gene expression at the transcriptional, posttranscriptional, epigenetic, and translation levels. Many reports have demonstrated that lncRNAs function as potential oncogene or tumour suppressors and thus play vital regulatory roles in tumourigenesis and tumour progression. ZNFX1 antisense RNA 1 (ZFAS1), a novel lncRNA transcribed in the antisense orientation of zinc finger NFX1‐type containing 1(ZNFX1), was found to be increased in multiple cancers, such as gastric cancer and hepatocellular carcinoma, contributing to cancer development and progression. In the present review, we summarized recent progression on study of the functions and underlying molecular mechanisms of ZFAS1 related to occurrence and development of multiple cancers.
Collapse
Affiliation(s)
- Anbang He
- Department of Urology, The Institute of Urology, Peking University First Hospital, Peking University, National Urological Cancer Centre, Beijing, 100034, China
| | - Shiming He
- Department of Urology, The Institute of Urology, Peking University First Hospital, Peking University, National Urological Cancer Centre, Beijing, 100034, China
| | - Xuesong Li
- Department of Urology, The Institute of Urology, Peking University First Hospital, Peking University, National Urological Cancer Centre, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, The Institute of Urology, Peking University First Hospital, Peking University, National Urological Cancer Centre, Beijing, 100034, China
| |
Collapse
|
30
|
Current insight into a cancer-implicated long noncoding RNA ZFAS1 and correlative functional mechanisms involved. Pathol Res Pract 2018; 214:1517-1523. [DOI: 10.1016/j.prp.2018.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/21/2022]
|
31
|
Dong D, Mu Z, Zhao C, Sun M. ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int 2018; 18:125. [PMID: 30186041 PMCID: PMC6122210 DOI: 10.1186/s12935-018-0623-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are classified as a kind of RNA, which are longer than 200 nucleotides in length and cannot be translated into proteins. Multiple studies have demonstrated that lncRNAs are involved in various cellular processes, including proliferation, differentiation, cell death, and metastasis. In addition, aberrant expression of lncRNAs has been discovered in human tumors, where they function as either oncogenes or tumor suppressor genes. Among numerous lncRNAs, we focus on ZNFX1 antisense RNA 1 (ZFAS1), a well-known lncRNA that is aberrant overexpression in various tumors, including melanoma, esophageal squamous cell carcinoma, non-small cell lung cancer, gastric cancer, colon cancer, and Hepatocellular carcinoma, in which it functions as oncogene. In contrast, ZFAS1 is downregulated in breast cancer, which may function as tumor suppressor gene. In this review, we provide an overview of current evidence concerning the role and potential clinical utilities of ZFAS1 in human cancers.
Collapse
Affiliation(s)
- Dan Dong
- 1Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Zhongyi Mu
- 3Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenghai Zhao
- 1Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Mingli Sun
- 2Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
32
|
Zhou Q, Liu J, Quan J, Liu W, Tan H, Li W. lncRNAs as potential molecular biomarkers for the clinicopathology and prognosis of glioma: A systematic review and meta-analysis. Gene 2018; 668:77-86. [DOI: 10.1016/j.gene.2018.05.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
|
33
|
ZFAS1 functions as an oncogenic long non-coding RNA in bladder cancer. Biosci Rep 2018; 38:BSR20180475. [PMID: 29678899 PMCID: PMC6048211 DOI: 10.1042/bsr20180475] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) ZFAS1 (zinc finger antisense 1) has been suggested to have an oncogenic role in the tumorigenesis of human malignant tumors. However, the expression status and biological function of ZFAS1 in bladder cancer is still unknown. Thus, the purpose of the present study is to explore the clinical value of ZFAS1 in bladder cancer patients, and the biological function of ZFAS1 in bladder cancer cell. In the present study, we found ZFAS1 expression was increased in bladder cancer tissues compared with paired adjacent normal tissues through analyzing the Cancer Genome Atlas (TCGA) database. Furthermore, we confirmed that levels of ZFAS1 expression were elevated in bladder cancer tissues and cell lines compared with normal bladder tissues and normal uroepithelium cell line, respectively. Then, we observed that the expression level of ZFAS1 was positively associated with clinical stag, muscularis invasion, lymph node metastasis, and distant metastasis in bladder cancer patients. The experiments in vitro suggested that knockdown of ZFAS1 repressed bladder cancer cell proliferation via up-regulating KLF2 and NKD2 expression, and inhibited cell migration and invasion via down-regulating ZEB1 and ZEB2 expression. In conclusion, ZFAS1 is overexpressed in bladder cancer, and functions as an oncogenic lncRNA in regulating bladder cancer cell proliferation, migration, and invasion.
Collapse
|
34
|
Singh AS, Heery R, Gray SG. In Silico and In Vitro Analyses of LncRNAs as Potential Regulators in the Transition from the Epithelioid to Sarcomatoid Histotype of Malignant Pleural Mesothelioma (MPM). Int J Mol Sci 2018; 19:ijms19051297. [PMID: 29701689 PMCID: PMC5983793 DOI: 10.3390/ijms19051297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy, with extremely poor survival rates. At present, treatment options are limited, with no second line chemotherapy for those who fail first line therapy. Extensive efforts are ongoing in a bid to characterise the underlying molecular mechanisms of mesothelioma. Recent research has determined that between 70–90% of our genome is transcribed. As only 2% of our genome is protein coding, the roles of the remaining proportion of non-coding RNA in biological processes has many applications, including roles in carcinogenesis and epithelial–mesenchymal transition (EMT), a process thought to play important roles in MPM pathogenesis. Non-coding RNAs can be separated loosely into two subtypes, short non-coding RNAs (<200 nucleotides) or long (>200 nucleotides). A significant body of evidence has emerged for the roles of short non-coding RNAs in MPM. Less is known about the roles of long non-coding RNAs (lncRNAs) in this disease setting. LncRNAs have been shown to play diverse roles in EMT, and it has been suggested that EMT may play a role in the aggressiveness of MPM histological subsets. In this report, using both in vitro analyses on mesothelioma patient material and in silico analyses of existing RNA datasets, we posit that various lncRNAs may play important roles in EMT within MPM, and we review the current literature regarding these lncRNAs with respect to both EMT and MPM.
Collapse
Affiliation(s)
- Anand S Singh
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- MSc in Translational Oncology Program, Trinity College Dublin, Dublin 2, Ireland.
| | - Richard Heery
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- MSc in Translational Oncology Program, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin 8, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin 8, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
35
|
Xi J, Sun Q, Ma L, Kang J. Long non-coding RNAs in glioma progression. Cancer Lett 2018; 419:203-209. [PMID: 29355660 DOI: 10.1016/j.canlet.2018.01.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/07/2018] [Accepted: 01/10/2018] [Indexed: 01/17/2023]
Abstract
Glioma is one of most malignant primary tumors of the brain. However, due to a lack of effective means for diagnosing and treating glioma, the prognosis of glioma patients remains poor. Therefore, understanding the molecular mechanism of glioma progression is essential for effective treatment. Long non-coding RNAs (lncRNAs) are novel regulators of gene expression at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence indicates that lncRNAs may play important roles in regulating the progression of glioma. In this article, we review the expression profile of lncRNAs in glioma and discuss the functions and known mechanisms of several representative lncRNAs in detail, as well as the prospects of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Li Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
36
|
Chen X, Yang C, Xie S, Cheung E. Long non-coding RNA GAS5 and ZFAS1 are prognostic markers involved in translation targeted by miR-940 in prostate cancer. Oncotarget 2018; 9:1048-1062. [PMID: 29416676 PMCID: PMC5787418 DOI: 10.18632/oncotarget.23254] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022] Open
Abstract
Identification of prognostic biomarkers helps facilitate the prediction of patient outcomes as well as guide treatments. Accumulating evidence now suggests that long non-coding RNAs (lncRNAs) play key roles in tumor progression with diagnostic and prognostic values. However, little is known about the biological functions of lncRNAs and how they contribute to the pathogenesis of cancer. Herein, we performed weighted correlation network analysis (WGCNA) on 380 RNA-seq samples from prostate cancer patients to create networks comprising of microRNAs, lncRNAs, and protein-coding genes. Our analysis revealed expression modules that associated with pathological parameters. More importantly, we identified a gene module that is involved in protein translation and is associated with patient survival. In this gene module, we explored the regulation axis involving GAS5, ZFAS1, and miR-940. We show that GAS5, ZFAS1, and miR-940 are up-regulated in tumors relative to normal prostate tissues, and high expression of either lncRNA is an indicator of poor patient outcome. Finally, we constructed a co-expression network involving GAS5, ZFAS1, and miR-940, as well as the targets of miR-940. Our results show that GAS5 and ZFAS1 are targeted by miR-940 via NAA10 and RPL28. Taken together, co-expression analysis of gene expression profiling from RNA-seq can accelerate the identification and functional characterization of novel prognostic markers in prostate cancer.
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Chao Yang
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Shengli Xie
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Edwin Cheung
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
37
|
Dong D, Mu Z, Wang W, Xin N, Song X, Shao Y, Zhao C. Prognostic value of long noncoding RNA ZFAS1 in various carcinomas: a meta-analysis. Oncotarget 2017; 8:84497-84505. [PMID: 29137442 PMCID: PMC5663614 DOI: 10.18632/oncotarget.21100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022] Open
Abstract
A number of studies have revealed that zinc finger antisense 1 (ZFAS1), a long noncoding RNA (lncRNA), is aberrantly regulated in various cancers, and high ZFAS1 expression is associated with poor prognosis and increased risk of lymph node metastasis (LNM). This meta-analysis was conducted to identify the potential value of ZFAS1 as a biomarker for cancer prognosis. We searched electronic database PubMed, Web of Science, and China Wanfang Data (up to June 1, 2017) to collect all relevant studies and explore the association of ZFAS1 expression with overall survival (OS) and LNM. The results showed that cancer patients with high ZFAS1 expression had a worse OS than those with low ZFAS1 expression (HR: 1.94, 95% confidence interval [CI]: 1.41–2.47, P < 0.001), and high ZFAS1 expression was significantly associated with LNM (OR: 2.60, 95% CI: 1.54–4.42, P < 0.001). Subgroup analysis revealed that high ZFAS1 expression was significantly related to high incidence of LNM in subgroups of sample size more than 88 (OR: 3.16, 95% CI: 2.06–4.86, P < 0.001), non-digestive system malignancies (OR: 4.05, 95% CI: 2.49–6.60, P < 0.001), and studies reported in 2017 (OR: 4.86, 95% CI: 2.67–8.84, P < 0.001) without significant heterogeneity. Further meta-regression by the covariates showed that tumor type, sample size, quality score, cut off value and publication year did not result in the inter-study heterogeneity. In conclusion, the present meta-analysis demonstrates that high ZFAS1 expression may potentially serve as a reliable biomarker for poor clinical outcome in various cancers.
Collapse
Affiliation(s)
- Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Zhongyi Mu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, People's Republic of China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Xiaowen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yue Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
38
|
Identifying Novel Glioma-Associated Noncoding RNAs by Their Expression Profiles. Int J Genomics 2017; 2017:2312318. [PMID: 29138748 PMCID: PMC5613369 DOI: 10.1155/2017/2312318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play a significant role in cancer development as regulators of protein-coding genes. Their dysregulation was in some extent already associated with glioma, the most aggressive primary brain tumours in adults. The correct diagnosis and treatment selection due to high tumour heterogeneity might be difficult and inadequate, resulting in poor prognosis. Studies of expression patterns of noncoding RNAs (ncRNAs) could provide useful insight in glioma molecular development. We used the qPCR approach to screen and investigate the expression of lncRNAs that were previously deregulated in other cancer types. The study showed altered expression levels for numerous lncRNAs across histologically different glioma samples. Validation of few lncRNAs showed association of expression levels with histological subtype and/or malignancy grade. We also observed deregulated and subtype-distinctive expression for four lncRNA-associated miRNAs. Expression of few lncRNAs and miRNA was also associated with patients' survival, showing potential prognostic value. Several ncRNAs, some already related to glioma and some, to the best of our knowledge, investigated for the first time, might be of greater importance in glioma molecular development and progression. Finding the subtype-specific lncRNA and/or miRNA expression patterns may contribute additional information for a more objective classification.
Collapse
|
39
|
Shi H, Liu Z, Pei D, Jiang Y, Zhu H, Chen B. Development and validation of nomogram based on lncRNA ZFAS1 for predicting survival in lymph node-negative esophageal squamous cell carcinoma patients. Oncotarget 2017; 8:59048-59057. [PMID: 28938617 PMCID: PMC5601713 DOI: 10.18632/oncotarget.19937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022] Open
Abstract
Background There is increasing evidence of a relationship between long non-coding RNA (lncRNA) and cancer. This study aimed to examine the prognostic value of the lncRNA ZFAS1 in esophageal squamous cell carcinoma (ESCC). Results The results showed that ZFAS1 expression was significantly higher in ESCC tissues compared with the corresponding adjacent normal tissues (P < 0.001). ESCC patients with high ZFAS1 expression had a poor overall survival (OS). Histological grade, T stage and ZFAS1 expression were integrated to develop the nomogram. The nomogram showed a significantly better prediction of OS for patients with lymph node-negative ESCC. The ROC curve also showed higher specificity and sensitivity for predicting 3- and 5-year ESCC patient survival compared with the AJCC staging system. The decision curve analysis also indicated a greater potential for the nomogram in clinical application compared with the AJCC staging system. Importantly, our findings were supported by a validation cohort. Materials and Methods We retrospectively investigated 398 lymph node-negative ESCC patients. Data from the primary cohort (n = 246) were used to develop a multivariate nomogram. The nomogram was internally validated for discrimination and calibration with bootstrap samples and was externally validated with an independent patient cohort (n = 152). Conclusions Our proposed nomogram, which integrates clinicopathological factors and ZFAS1 expression, can accurately predict the prognosis of lymph node-negative ESCC patients without preoperative chemoradiotherapy.
Collapse
Affiliation(s)
- Hongtai Shi
- Department of Radiotherapy, The Third People's Hospital of Yancheng, Yancheng 224005, China
| | - Zhenhua Liu
- Department of Radiotherapy, Yancheng City No.1 People's Hospital, Yancheng 224000, China
| | - Dong Pei
- Department of Radiotherapy, The Third People's Hospital of Yancheng, Yancheng 224005, China
| | - Youqin Jiang
- Department of Radiotherapy, The Third People's Hospital of Yancheng, Yancheng 224005, China
| | - Haiwen Zhu
- Department of Radiotherapy, The Third People's Hospital of Yancheng, Yancheng 224005, China
| | - Bin Chen
- Department of Radiotherapy, The Third People's Hospital of Yancheng, Yancheng 224005, China
| |
Collapse
|
40
|
Song W, Tian C, Zhang RJ, Zou SB, Wang K. Meta-analysis of the prognostic value of lncRNA ZFAS1 in patients with solid tumors. Oncotarget 2017; 8:90301-90307. [PMID: 29163829 PMCID: PMC5685750 DOI: 10.18632/oncotarget.19566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023] Open
Abstract
Expression of ZFAS1, a newly identified long noncoding RNA (lncRNA), is dysregulated in several types of cancer. Here we assessed the prognostic value of ZFAS1 in solid tumors. A comprehensive literature search was performed by screening the PubMed, EMBASE, MEDLINE, Cochrane Library, CNKI, and Wanfang databases. A total of 874 patients from 10 studies were included. The pooled analysis demonstrated that patients with high ZFAS1 expression had a significantly shorter overall survival (OS) (HR, 1.58; 95% CI, 1.28–1.97; P < 0.001) and recurrence-free survival (RFS) (HR, 1.90; 95% CI, 1.29–2.79; P = 0.001). Moreover, elevated ZFAS1 expression correlated with tumor size, tumor-node-metastasis (TNM) stage, and lymph node metastasis (LNM). These results demonstrate that increased ZFAS1 expression correlates with a poor prognosis in cancer patients, which suggests ZFAS1 might be useful as a potential prognostic biomarker in patients with solid tumors.
Collapse
Affiliation(s)
- Wei Song
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuan Tian
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Run-Jin Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shu-Bing Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Lan T, Lan X, Li G, Zheng Z, Zhang M, Qin F. Prognostic role of long noncoding RNA ZFAS1 in cancer patients: a systematic review and meta-analysis. Oncotarget 2017; 8:100490-100498. [PMID: 29245995 PMCID: PMC5725037 DOI: 10.18632/oncotarget.19162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNA ZFAS1 has been identified as a crucial role in the tumorigenesis of malignant tumors. Numerous studies reported that the expression levels of ZFAS1 in tumor tissues were dramatically higher than that in adjacent normal tissues. We conducted a meta-analysis to investigate the correlation between ZFAS1 expression and clinical outcomes of cancer patients. The databases of PubMed, EMBASE, Web of Science, Cochrane Library, CNKI and WanFang were retrieved for eligible studies. A total of 841 patients from 9 studies were eventually included. Our results demonstrated that increased ZFAS1 expression was significantly associated with poor OS in cancer patients (HR = 2.13, 95% CI = 1.71–2.65, P < 0.001). Patients with high ZFAS1 expression presented shorter RFS than those with low ZFAS1 expression (HR = 2.00, 95% CI = 1.45–2.77, P < 0.001). The clinicopathological parameters analysis demonstrated that increased ZFAS1 expression was significantly associated with vascular invasion (OR = 2.26, 95% CI = 1.36–3.78, P = 0.002), lymph node metastasis (OR = 2.98, 95% CI = 2.12–4.19, P < 0.001) and advanced TNM stage (OR = 3.00, 95% CI = 2.18–4.12, P < 0.001). In conclusion, lncRNA ZFAS1 might serve as a prognostic biomarker for cancer patients and increased ZFAS1 expression may be closely related to advanced characteristics of cancer.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P.R. China
| | - Xiong Lan
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, P.R. China
| | - Guangcai Li
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, P.R. China
| | - Zhen Zheng
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, P.R. China
| | - Minghua Zhang
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, P.R. China
| | - Faxiang Qin
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, P.R. China
| |
Collapse
|