1
|
Zhang B, Zhao R, Wang Q, Zhang YJ, Yang L, Yuan ZJ, Yang J, Wang QJ, Yao L. An EMT-Related Gene Signature to Predict the Prognosis of Triple-Negative Breast Cancer. Adv Ther 2023; 40:4339-4357. [PMID: 37462865 PMCID: PMC10499992 DOI: 10.1007/s12325-023-02577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is an important biological process in tumor invasion and metastasis, and thus a potential indicator of the progression and drug resistance of breast cancer. This study comprehensively analyzed EMT-related genes in triple-negative breast cancer (TNBC) to develop an EMT-related prognostic gene signature. METHODS With the application of The Cancer Genome Atlas (TCGA) database, Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), and the Genotype-Tissue Expression (GTEx) database, we identified EMT-related signature genes (EMGs) by Cox univariate regression and LASSO regression analysis. Risk scores were calculated and used to divide patients with TNBC into high-risk group and low-risk groups by the median value. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were applied for model validation. Independent prognostic predictors were used to develop nomograms. Then, we assessed the risk model in terms of the immune microenvironment, genetic alteration and DNA methylation effects on prognosis, the probability of response to immunotherapy and chemotherapy, and small molecule drugs predicted by The Connectivity Map (Cmap) database. RESULTS Thirteen EMT-related genes with independent prognostic value were identified and used to stratify the patients with TNBC into high- and low-risk groups. The survival analysis revealed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group. Populations of immune cells, including CD4 memory resting T cells, CD4 memory activated T cells, and activated dendritic cells, significantly differed between the high- and low-risk groups. Moreover, some therapeutic drugs to which the high-risk group might show sensitivity were identified. CONCLUSIONS Our research identified the significant impact of EMGs on prognosis in TNBC, providing new strategies for personalizing TNBC treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ya-Jing Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Liu Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhou-Jun Yuan
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Yang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Qian-Jun Wang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Liang Yao
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China.
| |
Collapse
|
2
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Naturae 2021; 13:76-90. [PMID: 33959388 PMCID: PMC8084295 DOI: 10.32607/actanaturae.11062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
The review analyzes Snail family proteins, which are transcription factors involved in the regulation of the epithelial-mesenchymal transition (EMT) of tumor cells. We describe the structure of these proteins, their post-translational modification, and the mechanisms of Snail-dependent regulation of genes. The role of Snail proteins in carcinogenesis, invasion, and metastasis is analyzed. Furthermore, we focus on EMT signaling mechanisms involving Snail proteins. Next, we dissect Snail signaling in hypoxia, a condition that complicates anticancer treatment. Finally, we offer classes of chemical compounds capable of down-regulating the transcriptional activity of Snails. Given the important role of Snail proteins in cancer biology and the potential for pharmacological inhibition, Snail family proteins may be considered promising as therapeutic targets.
Collapse
Affiliation(s)
- M. A. Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. I. Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - V. V. Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. M. Scherbakov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
4
|
Crosstalk between Epidermal Growth Factor Receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur J Cell Biol 2020; 99:151083. [PMID: 32381360 DOI: 10.1016/j.ejcb.2020.151083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is important in a variety of physiological and pathologic processes, including development, tumor invasion, and metastasis. Integrin-mediated attachment to ECM proteins has emerged to cue events primitively important for the transformed phenotype of human cancer cells. Cross-talk between integrins and growth factor receptors takes an increasingly prominent role in defining adhesion, motility, and cell growth. This functional interaction has expanded beyond to link integrins with resistance to Tyrosine kinase inhibitors (TKIs) of Epidermal Growth Factor Receptors (EGFRs). In this regard, integrin-mediated adhesion has two separate functions one as a clear collaborator with growth factor receptor signaling and the second as a basic mechanism contributing in Epithelial to Mesenchymal Transition (EMT) which affects response to chemotherapy. This review provides an overview of these mechanisms and describes treatment options for selectively targeting and disrupting integrin interaction to EGFR for cancer therapy.
Collapse
|
5
|
Ma J, Li J, Wang Y, Chen W, Zheng P, Chen Y, Sun Z, Liu J, Zhou Y, Wang J, Liu S, Han X. WSZG inhibits BMSC-induced EMT and bone metastasis in breast cancer by regulating TGF-β1/Smads signaling. Biomed Pharmacother 2019; 121:109617. [PMID: 31810139 DOI: 10.1016/j.biopha.2019.109617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis of breast cancer causes severe skeletal-related events and poor prognosis. Wensheng Zhuanggu Formula (WSZG), a traditional Chinese prescription, is used to adjunctively treat breast cancer bone metastases in clinical practice. This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast cancer cells and ameliorated bone metastases and damages in nude mice following co-injection of BMSCs and MDA-MB-231BO breast cancer cells. Further investigation showed that the transforming growth factor-β1 (TGF-β1)/Smads pathway was an important mechanism enabling BMSCs to induce EMT occurrence of breast cancer cells. WSZG treatment reversed BMSC-induced EMT by downregulating TGF-β1/Smads signaling. Thus, WSZG extracts may be regarded as a potential antibone-metastatic agent for breast cancer therapy.
Collapse
Affiliation(s)
- Jiao Ma
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiajia Li
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ying Wang
- Shanghai University of Traditional Chinese Medicine, School of Chinese Materia Medica, Shanghai 201203, China
| | - Weiling Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yueqiang Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhenping Sun
- Department of Breast Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jin Liu
- Department of Breast Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yin Zhou
- Department of Breast Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jianyi Wang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
6
|
D'Antonio-Chronowska A, Donovan MKR, Young Greenwald WW, Nguyen JP, Fujita K, Hashem S, Matsui H, Soncin F, Parast M, Ward MC, Coulet F, Smith EN, Adler E, D'Antonio M, Frazer KA. Association of Human iPSC Gene Signatures and X Chromosome Dosage with Two Distinct Cardiac Differentiation Trajectories. Stem Cell Reports 2019; 13:924-938. [PMID: 31668852 PMCID: PMC6895695 DOI: 10.1016/j.stemcr.2019.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the importance of understanding how variability across induced pluripotent stem cell (iPSC) lines due to non-genetic factors (clone and passage) influences their differentiation outcome, large-scale studies capable of addressing this question have not yet been conducted. Here, we differentiated 191 iPSC lines to generate iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Comparing the transcriptomes of CM-fated and EPDC-fated iPSCs, we discovered that 91 signature genes and X chromosome dosage differences are associated with these two distinct cardiac developmental trajectories. In an independent set of 39 iPSCs differentiated into CMs, we confirmed that sex and transcriptional differences affect cardiac-fate outcome. Our study provides novel insights into how iPSC transcriptional and X chromosome gene dosage differences influence their response to differentiation stimuli and, hence, cardiac cell fate. Cellular heterogeneity across iPSC-CVPCs due to varying fractions of CMs and EPDCs iPSC non-genetic factors (clone and passage) associated with cardiac cell fate Expression levels of signature genes in iPSCs associated with cardiac lineage fate iPSC donor sex plays a role in cardiac lineage fate
Collapse
Affiliation(s)
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | | | - Jennifer Phuong Nguyen
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Sherin Hashem
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Hiroko Matsui
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | | | - Mana Parast
- Department of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Michelle C Ward
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Florence Coulet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Erin N Smith
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Eric Adler
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Matteo D'Antonio
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| | - Kelly A Frazer
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Lemos LGT, Longo GMDC, Mendonça BDS, Robaina MC, Brum MCM, Cirilo CDA, Gimba ERP, Costa PRR, Buarque CD, Nestal de Moraes G, Maia RC. The LQB-223 Compound Modulates Antiapoptotic Proteins and Impairs Breast Cancer Cell Growth and Migration. Int J Mol Sci 2019; 20:ijms20205063. [PMID: 31614718 PMCID: PMC6834317 DOI: 10.3390/ijms20205063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Drug resistance represents a major issue in treating breast cancer, despite the identification of novel therapeutic strategies, biomarkers, and subgroups. We have previously identified the LQB-223, 11a-N-Tosyl-5-deoxi-pterocarpan, as a promising compound in sensitizing doxorubicin-resistant breast cancer cells, with little toxicity to non-neoplastic cells. Here, we investigated the mechanisms underlying LQB-223 antitumor effects in 2D and 3D models of breast cancer. MCF-7 and MDA-MB-231 cells had migration and motility profile assessed by wound-healing and phagokinetic track motility assays, respectively. Cytotoxicity in 3D conformation was evaluated by measuring spheroid size and performing acid phosphatase and gelatin migration assays. Protein expression was analyzed by immunoblotting. Our results show that LQB-223, but not doxorubicin treatment, suppressed the migratory and motility capacity of breast cancer cells. In 3D conformation, LQB-223 remarkably decreased cell viability, as well as reduced 3D culture size and migration. Mechanistically, LQB-223-mediated anticancer effects involved decreased proteins levels of XIAP, c-IAP1, and Mcl-1 chemoresistance-related proteins, but not survivin. Survivin knockdown partially potentiated LQB-223-induced cytotoxicity. Additionally, cell treatment with LQB-223 resulted in changes in the mRNA levels of epithelial-mesenchymal transition markers, suggesting that it might modulate cell plasticity. Our data demonstrate that LQB-223 impairs 3D culture growth and migration in 2D and 3D models of breast cancer exhibiting different phenotypes.
Collapse
Affiliation(s)
- Lauana Greicy Tonon Lemos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Gabriel Mello da Cunha Longo
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Bruna Dos Santos Mendonça
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA. Rua André Cavalcanti, 37, 2° andar, Centro, RJ 20 231-050, Brazil.
| | - Marcela Cristina Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Mariana Concentino Menezes Brum
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA. Rua André Cavalcanti, 37, 2° andar, Centro, RJ 20 231-050, Brazil.
- Programa de Oncobiologia Celular e Molecular, INCA. Praça da Cruz Vermelha, 23, 6 andar, Centro, RJ 20 231-050, Brazil.
| | - Caíque de Assis Cirilo
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, INCA. Praça da Cruz Vermelha, 23, 6 andar, Centro, RJ 20 231-050, Brazil.
- Departamento de Ciências da Natureza, Instituto de Humanidades e Saúde, Universidade Federal Fluminense (UFF), Rua Recife 1-7, Bela Vista, Rio das Ostras, RJ 28880-000, Brazil.
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro, CCS, Bloco H - Ilha do Fundão, RJ 21941-902, Brazil.
| | - Camilla Djenne Buarque
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, RJ 22435-900, Brazil.
| | - Gabriela Nestal de Moraes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional do Câncer (INCA). Praça da Cruz Vermelha, 23, 6 andar, Rio de Janeiro (RJ) 20230 130, Brazil.
| |
Collapse
|
8
|
Lakhtakia R, Aljarrah A, Furrukh M, Ganguly SS. Epithelial Mesenchymal Transition (EMT) in Metastatic Breast Cancer in Omani Women. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2017; 10:25-37. [PMID: 28526992 PMCID: PMC5750198 DOI: 10.1007/s12307-017-0194-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) in Oman affects younger women and has a more aggressive course. Clinical and biological variables like age, pregnancy, tumor size, type, grade, receptor expression and proliferation predict disease aggression but there is no direct predictor of metastasis except lymphovascular invasion. Epithelial-mesenchymal transition (EMT) is characterized by epithelial cells losing epithelial and acquiring mesenchymal morpho-immunophenotypic characteristics. In tumors, EMT-like transitions may signify a metastatic phenotype and have features in common with cancer stem cells (CSC) which show resistance to chemotherapy. This study aimed to identify EMT and CSC phenotypes in metastatic and non-metastatic breast cancer in Omani women and their association with conventional clinico-pathological predictors of BC. In a retrospective study of ninety-six Omani women with breast cancer, the association of age, pregnancy/lactation, tumor size, type, grade, ductal carcinoma insitu (DCIS), lymphovascular invasion, hormone/ HER2 receptor expression and Ki67 proliferation index (Ki67 PI) was tested with EMT/ CSC phenotype and metastasis. Young age ≤ 40 years, lymphovascular invasion and EMT had a strong association with metastasis; CSC approached significance. Vimentin expression in tumor cells, fibronectin and MMP-11 in stroma were reliable markers of EMT; dual EMT and CSC phenotype (Vim+/ CD44+/ CD 24-/low) had a strong association with apocrine variant, basal-like tumors and triple negative cancers. EMT had a strong association with Ki67 proliferation index (PI) and CSC with HER2-like tumors and distant metastasis. These select markers may be useful in metastasis-prediction in pre-treatment biopsies.
Collapse
Affiliation(s)
- Ritu Lakhtakia
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | | | - Muhammad Furrukh
- Shifa Medical Center, Shifa International Hospital, Islamabad, Pakistan
| | | |
Collapse
|
9
|
|
10
|
Kast RE, Skuli N, Cos S, Karpel-Massler G, Shiozawa Y, Goshen R, Halatsch ME. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. BREAST CANCER-TARGETS AND THERAPY 2017; 9:495-514. [PMID: 28744157 PMCID: PMC5513700 DOI: 10.2147/bctt.s139963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways - RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E - that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse - CRCT, UMR1037 Inserm/Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), Santander, Spain
| | | | - Yusuke Shiozawa
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ran Goshen
- Eliaso Consulting Ltd., Tel Aviv-Yafo, Israel
| | | |
Collapse
|