1
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
2
|
ENPP2 Promoter Methylation Correlates with Decreased Gene Expression in Breast Cancer: Implementation as a Liquid Biopsy Biomarker. Int J Mol Sci 2022; 23:ijms23073717. [PMID: 35409077 PMCID: PMC8998992 DOI: 10.3390/ijms23073717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Autotaxin (ATX), encoded by the ctonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) gene, is a key enzyme in lysophosphatidic acid (LPA) synthesis. We have recently described ENPP2 methylation profiles in health and multiple malignancies and demonstrated correlation to its aberrant expression. Here we focus on breast cancer (BrCa), analyzing in silico publicly available BrCa methylome datasets, to identify differentially methylated CpGs (DMCs) and correlate them with expression. Numerous DMCs were identified between BrCa and healthy breast tissues in the gene body and promoter-associated regions (PA). PA DMCs were upregulated in BrCa tissues in relation to normal, in metastatic BrCa in relation to primary, and in stage I BrCa in relation to normal, and this was correlated to decreased mRNA expression. The first exon DMC was also investigated in circulating cell free DNA (ccfDNA) isolated by BrCa patients; methylation was increased in BrCa in relation to ccfDNA from healthy individuals, confirming in silico results. It also differed between patient groups and was correlated to the presence of multiple metastatic sites. Our data indicate that promoter methylation of ENPP2 arrests its transcription in BrCa and introduce first exon methylation as a putative biomarker for diagnosis and monitoring which can be assessed in liquid biopsy.
Collapse
|
3
|
ENPP2 Methylation in Health and Cancer. Int J Mol Sci 2021; 22:ijms222111958. [PMID: 34769391 PMCID: PMC8585013 DOI: 10.3390/ijms222111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Autotaxin (ATX) encoded by Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a key enzyme in Lysophosphatidic Acid (LPA) synthesis implicated in cancer. Although its aberrant expression has been reported, ENPP2 methylation profiles in health and malignancy are not described. We examined in silico the methylation of ENPP2 analyzing publicly available methylome datasets, to identify Differentially Methylated CpGs (DMCs) which were then correlated with expression at gene and isoform levels. Significance indication was set to be FDR corrected p-value < 0.05. Healthy tissues presented methylation in all gene body CGs and lower levels in Promoter Associated (PA) regions, whereas in the majority of the tumors examined (HCC, melanoma, CRC, LC and PC) the methylation pattern was reversed. DMCs identified in the promoter were located in sites recognized by multiple transcription factors, suggesting involvement in gene expression. Alterations in methylation were correlated to an aggressive phenotype in cancer cell lines. In prostate and lung adenocarcinomas, increased methylation of PA CGs was correlated to decreased ENPP2 mRNA expression and to poor prognosis parameters. Collectively, our results corroborate that methylation is an active level of ATX expression regulation in cancer. Our study provides an extended description of the methylation status of ENPP2 in health and cancer and points out specific DMCs of value as prognostic biomarkers.
Collapse
|
4
|
Han Y, Ji L, Guan Y, Ma M, Li P, Xue Y, Zhang Y, Huang W, Gong Y, Jiang L, Wang X, Xie H, Zhou B, Wang J, Wang J, Han J, Deng Y, Yi X, Gao F, Huang J. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome. Clin Transl Med 2021; 11:e498. [PMID: 34323415 PMCID: PMC8288011 DOI: 10.1002/ctm2.498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second leading cause of cancer death among women worldwide. Epigenetic regulation of gene expression through DNA methylation and hydroxymethylation plays a pivotal role during tumorigenesis. In this study, to analyze the epigenomic landscape and identify potential biomarkers for CCs, we selected a series of samples from normal to cervical intra-epithelial neoplasia (CINs) to CCs and performed an integrative analysis of whole-genome bisulfite sequencing (WGBS-seq), oxidative WGBS, RNA-seq, and external histone modifications profiling data. RESULTS In the development and progression of CC, there were genome-wide hypo-methylation and hypo-hydroxymethylation, accompanied by local hyper-methylation and hyper-hydroxymethylation. Hydroxymethylation prefers to distribute in the CpG islands and CpG shores, as displayed a trend of gradual decline from health to CIN2, while a trend of increase from CIN3 to CC. The differentially methylated and hydroxymethylated region-associated genes both enriched in Hippo and other cancer-related signaling pathways that drive cervical carcinogenesis. Furthermore, we identified eight novel differentially methylated/hydroxymethylated-associated genes (DES, MAL, MTIF2, PIP5K1A, RPS6KA6, ANGEL2, MPP, and PAPSS2) significantly correlated with the overall survival of CC. In addition, no any correlation was observed between methylation or hydroxymethylation levels and somatic copy number variations in CINs and CCs. CONCLUSION Our current study systematically delineates the map of methylome and hydroxymethylome from CINs to CC, and some differentially methylated/hydroxymethylated-associated genes can be used as the potential epigenetic biomarkers in CC prognosis.
Collapse
Affiliation(s)
- Yingxin Han
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yanfang Guan
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
- GenePlus‐BeijingBeijingChina
| | | | | | - Yinge Xue
- Shanghai FLY Medical LaboratoryShanghaiChina
| | | | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Li Jiang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xipeng Wang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Xie
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Boping Zhou
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Jiayin Wang
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
| | - Junwen Wang
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jinghua Han
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Yi
- GenePlus‐BeijingBeijingChina
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
5
|
Panagopoulou M, Cheretaki A, Karaglani M, Balgkouranidou I, Biziota E, Amarantidis K, Xenidis N, Kakolyris S, Baritaki S, Chatzaki E. Methylation Status of Corticotropin-Releasing Factor (CRF) Receptor Genes in Colorectal Cancer. J Clin Med 2021; 10:2680. [PMID: 34207031 PMCID: PMC8234503 DOI: 10.3390/jcm10122680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
The corticotropin-releasing factor (CRF) system has been strongly associated with gastrointestinal pathophysiology, including colorectal cancer (CRC). We previously showed that altered expression of CRF receptors (CRFRs) in the colon critically affects CRC progression and aggressiveness through regulation of colonic inflammation. Here, we aimed to assess the potential of CRFR methylation levels as putative biomarkers in CRC. In silico methylation analysis of CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2) was performed using methylome data derived by CRC and Crohn's disease (CD) tissues and CRC-derived circulating cell-free DNAs (ccfDNAs). In total, 32 and 33 differentially methylated sites of CpGs (DMCs) emerged in CRFR1 and CRFR2, respectively, between healthy and diseased tissues. The methylation patterns were verified in patient-derived ccfDNA samples by qMSP and associated with clinicopathological characteristics. An automated machine learning (AutoML) technology was applied to ccfDNA samples for classification analysis. In silico analysis revealed increased methylation of both CRFRs in CRC tissue and ccfDNA-derived datasets. CRFR1 hypermethylation was also noticed in gene body DMCs of CD patients. CRFR1 hypermethylation was further validated in CRC adjuvant-derived ccfDNA samples, whereas CRFR1 hypomethylation, observed in metastasis-derived ccfDNAs, was correlated to disease aggressiveness and adverse prognostic characteristics. AutoML analysis based on CRFRs methylation status revealed a three-feature high-performing biosignature for CRC diagnosis with an estimated AUC of 0.929. Monitoring of CRFRs methylation-based signature in CRC tissues and ccfDNAs may be of high diagnostic and prognostic significance in CRC.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Antonia Cheretaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Ioanna Balgkouranidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Eirini Biziota
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Nikolaos Xenidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Stylianos Kakolyris
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
- Hellenic Mediterranean University Research Centre, Institute of Agri-Food and Life Sciences, GR-71410 Heraklion, Greece
| |
Collapse
|
6
|
Panagopoulou M, Karaglani M, Manolopoulos VG, Iliopoulos I, Tsamardinos I, Chatzaki E. Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning. Cancers (Basel) 2021; 13:1677. [PMID: 33918195 PMCID: PMC8037759 DOI: 10.3390/cancers13071677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in breast cancer (BrCa) pathogenesis and could contribute to driving its personalized management. We performed a complete bioinformatic analysis in BrCa whole methylome datasets, analyzed using the Illumina methylation 450 bead-chip array. Differential methylation analysis vs. clinical end-points resulted in 11,176 to 27,786 differentially methylated genes (DMGs). Innovative automated machine learning (AutoML) was employed to construct signatures with translational value. Three highly performing and low-feature-number signatures were built: (1) A 5-gene signature discriminating BrCa patients from healthy individuals (area under the curve (AUC): 0.994 (0.982-1.000)). (2) A 3-gene signature identifying BrCa metastatic disease (AUC: 0.986 (0.921-1.000)). (3) Six equivalent 5-gene signatures diagnosing early disease (AUC: 0.973 (0.920-1.000)). Validation in independent patient groups verified performance. Bioinformatic tools for functional analysis and protein interaction prediction were also employed. All protein encoding features included in the signatures were associated with BrCa-related pathways. Functional analysis of DMGs highlighted the regulation of transcription as the main biological process, the nucleus as the main cellular component and transcription factor activity and sequence-specific DNA binding as the main molecular functions. Overall, three high-performance diagnostic/prognostic signatures were built and are readily available for improving BrCa precision management upon prospective clinical validation. Revisiting archived methylomes through novel bioinformatic approaches revealed significant clarifying knowledge for the contribution of gene methylation events in breast carcinogenesis.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece;
| | - Ioannis Tsamardinos
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, GR-70013 Heraklion, Greece;
- Department of Computer Science, University of Crete, GR-70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, GR-70013 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
| |
Collapse
|
7
|
Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13040728. [PMID: 33578793 PMCID: PMC7916622 DOI: 10.3390/cancers13040728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our research focuses in the elucidation of the nature of circulating cell-free DNA (ccfDNA) as a biological entity and its exploitation as a liquid biopsy biomaterial. Working on breast cancer, it became clear that although a promising biosource, its clinical exploitation is burdened mainly by gaps in knowledge about its biology and specific characteristics. The current review covers multiple aspects of ccfDNA in breast cancer. We cover key issues such as quantity, integrity, releasing structures, methylation specific changes, release mechanisms, biological role. Machine learning approaches for analyzing ccfDNA-generated data to produce classifiers for clinical use are also discussed. Abstract Breast cancer (BC) is a leading cause of death between women. Mortality is significantly raised due to drug resistance and metastasis, while personalized treatment options are obstructed by the limitations of conventional biopsy follow-up. Lately, research is focusing on circulating biomarkers as minimally invasive choices for diagnosis, prognosis and treatment monitoring. Circulating cell-free DNA (ccfDNA) is a promising liquid biopsy biomaterial of great potential as it is thought to mirror the tumor’s lifespan; however, its clinical exploitation is burdened mainly by gaps in knowledge of its biology and specific characteristics. The current review aims to gather latest findings about the nature of ccfDNA and its multiple molecular and biological characteristics in breast cancer, covering basic and translational research and giving insights about its validity in a clinical setting.
Collapse
|
8
|
Abstract
Despite high mortality rates, molecular understanding of metastasis remains limited. It can be regulated by both pro- and anti-metastasis genes. The metastasis suppressor, breast cancer metastasis suppressor 1 (BRMS1), has been positively correlated with patient outcomes, but molecular functions are still being characterized. BRMS1 has been implicated in focal adhesion kinase (FAK), epidermal growth factor receptor (EGFR), and NF-κB signaling pathways. We review evidence that BRMS1 regulates these vast signaling pathways through chromatin remodeling as a member of mSin3 histone deacetylase complexes.
Collapse
|
9
|
Xiong J, Tu Y, Feng Z, Li D, Yang Z, Huang Q, Li Z, Cao Y, Jie Z. Epigenetics mechanisms mediate the miR-125a/BRMS1 axis to regulate invasion and metastasis in gastric cancer. Onco Targets Ther 2019; 12:7513-7525. [PMID: 31571904 PMCID: PMC6753057 DOI: 10.2147/ott.s210376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Altered expression of breast cancer metastasis suppressor 1 (BRMS1), is a tumor suppressor, which is found in many types of cancers, including gastric cancer (GC), but the mechanism by which BRMS1 inhibits invasion and metastasis in GC is unknown. The aim of the study was to investigate the molecular mechanisms of miR-125a/BRMS1 in GC. Materials and methods The expression of BRMS1 and miR-125a were detected by quantitative real-time PCR (qRT-PCR) and analyzed by bioinformatics. BSP and MSP were used to detecte the methylation status of miR-125a and BRMS1 which was treated by 5-Aza or not. Western Blot and qRT-PCR were used to analyze the expression of BRMS1 and EZH2. Transwell was performed to explore the invasion and metastasis ability of GC cells. The nude mice were used for the tumor formation assay. Results BRMS1 may be regulated by copy number variation (CNV), methylation and miR-125a-5p. As one of the essential components of PRC2, EZH2 is an important regulatory factor resulting in the low expression of miR-125a. An epigenetic mechanism mediates the miR-125a/BRMS1 axis to inhibit the invasion and metastasis of GC cells. In vivo experiments, it is also showed that BRMS1 is involved in invasion and metastasis but not the proliferation in GC. Conclusion These studies shed light on the mechanism of BRMS1 inhibition of GC invasion and metastasis and the development of new drugs targeting the miR-125a/BRMS1 axis, which will be a promising therapeutic strategy for GC and other human cancers.
Collapse
Affiliation(s)
- Jianbo Xiong
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Tu
- Department of Pathology, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zhouwen Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Qiuxia Huang
- Department of Nursing, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yi Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
10
|
Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical Cancer Markers: Epigenetics and microRNAs. Lab Med 2018; 49:97-111. [DOI: 10.1093/labmed/lmx080] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vishuda Laengsri
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| | - Usanee Kerdpin
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Chotiros Plabplueng
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| | - Lertyot Treeratanapiboon
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pornlada Nuchnoi
- Center for Research & Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microscopy, Mahidol University, Bangkok, Thailand
| |
Collapse
|