1
|
Liu N, Pang B, Kang L, Li D, Jiang X, Zhou CM. TUFM in health and disease: exploring its multifaceted roles. Front Immunol 2024; 15:1424385. [PMID: 38868764 PMCID: PMC11167084 DOI: 10.3389/fimmu.2024.1424385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.
Collapse
Affiliation(s)
- Ning Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-min Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Zhang H, Chen G, Feng X, Song H, Meng L, Fu Y, Yang J, Fan Z, Ding Y, Du Z, Wang J, Yang L, Zhang J, Sun L, Liu Z, Zhang Z, Li Q, Fan X. Targeting WDxR motif reprograms immune microenvironment and inhibits hepatocellular carcinoma progression. EMBO Mol Med 2023; 15:e15924. [PMID: 36947051 PMCID: PMC10165360 DOI: 10.15252/emmm.202215924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The WD-repeat (WDR) family affects carcinogenesis, but its role in the immune microenvironment is poorly characterized. Although functional loss or gain of WDR6 does not markedly change in vitro proliferative and invasive capacity of HCC cells, its deficiency in hepa1-6 cells drastically inhibits the growth and lung metastasis of orthotopically implanted tumors in immune-competent C57BL/6J mice. Mechanistically, WDR6 targets tumor suppressor UVRAG to the CUL4A-DDB1-ROC1 E3 ubiquitin ligase complex through a unique WDxR motif and promotes its degradation. This upregulates chromatin accessibility at the TNFα locus by blocking autophagic degradation of p65, elevates intratumoral myeloid-derived suppressor cell (MDSC) number, and reduces CD8+ T cell infiltration, thereby promoting HCC progression. These immunosuppressive effects are reversed by TNFα blockade. TNFα recruits NF-κB to activate the transcription of WDR6, establishing a WDR6-TNFα loop. Clinically, the WDR6/UVRAG/NF-κB pathway is hyperactivated in HCC, predicting a poor prognosis. Importantly, a WDxR-like peptide disrupts the WDR6/UVRAG complex and enhances the efficiency of anti-PD-L1 against HCC with WDR6 dysregulation.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Histology and Embryology, Xiang Ya School of Medicine, Central South University, Changsha, China
| | - Gang Chen
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xing Feng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Huiwen Song
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lingbing Meng
- Departments of Cardiology, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yao Fu
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jun Yang
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Youxiang Ding
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhijie Du
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianchao Wang
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Li Yang
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
- Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China
| | - Jun Zhang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Lixia Sun
- Department of Hepatological Surgery, The Affiliated Wuhu hospital of ECNU, Wuhu, China
| | - Zhigang Liu
- Department of Hepatological Surgery, The Affiliated Wuhu hospital of ECNU, Wuhu, China
| | - Zhiyong Zhang
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ, USA
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Quanhai Li
- Cell Therapy Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangshan Fan
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
3
|
Silva MC, Eugénio P, Faria D, Pesquita C. Ontologies and Knowledge Graphs in Oncology Research. Cancers (Basel) 2022; 14:cancers14081906. [PMID: 35454813 PMCID: PMC9029532 DOI: 10.3390/cancers14081906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The complexity of cancer research stems from leaning on several biomedical disciplines for relevant sources of data, many of which are complex in their own right. A holistic view of cancer—which is critical for precision medicine approaches—hinges on integrating a variety of heterogeneous data sources under a cohesive knowledge model, a role which biomedical ontologies can fill. This study reviews the application of ontologies and knowledge graphs in cancer research. In total, our review encompasses 141 published works, which we categorized under 14 hierarchical categories according to their usage of ontologies and knowledge graphs. We also review the most commonly used ontologies and newly developed ones. Our review highlights the growing traction of ontologies in biomedical research in general, and cancer research in particular. Ontologies enable data accessibility, interoperability and integration, support data analysis, facilitate data interpretation and data mining, and more recently, with the emergence of the knowledge graph paradigm, support the application of Artificial Intelligence methods to unlock new knowledge from a holistic view of the available large volumes of heterogeneous data.
Collapse
|
4
|
Liu B, Shi H, Qiu W, Wu X, Li L, Wu W. A two-microRNA signature predicts the progression of male thyroid cancer. Open Life Sci 2021; 16:981-991. [PMID: 34595349 PMCID: PMC8439266 DOI: 10.1515/biol-2021-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
In various cancers, microRNAs (miRNAs) are abnormally expressed, including thyroid cancer (TC). In recent years, the incidence of TC has increased annually around the world. Compared with female patients, male TC patients are more likely to have a postoperative recurrence and lymph node metastasis, and hence need second treatments. However, the molecular biological processes underlying this phenomenon are not understood. Therefore, we collected data on miRNA expression and clinical information of male TC patients from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs were identified between male TC tissues and matched normal tissues. The Kaplan–Meier method, univariate and multivariate Cox regressions, and receiver operating characteristic curve analyses were performed to assess the association between miRNAs and the disease-free survival of male TC patients. Gene Ontology (GO) and the Kyoto Encyclopaedia of Gene and Genome (KEGG) enrichment analyses were then used to explore the function of miRNA target genes. Furthermore, we evaluated the ability of the miRNA biomarker to predict survival in female TC patients. As a result, a total of 118 differentially expressed miRNAs were identified, including 25 upregulated and 93 downregulated miRNAs. Among them, miR-451a and miR-16-1-3p were confirmed to be independent prognostic factors for the disease-free survival rate. The target genes of miR-451a and miR-16-1-3p were identified, and functional analysis showed that these genes were enriched in 25 Go and KEGG accessions, including cell signal transduction, motor adhesion, phagocytosis, regulation of transcription, cell proliferation, angiogenesis, etc. Neither miR-451a and miR-16-1-3p, nor a prediction model based on both miRNAs effectively predicted survival in female TC patients. In conclusion, both miR-451a and miR-16-1-3p may play important roles in the processes of male TC. The two-miRNA signature involving miR-1258 and miR-193a may serve as a novel prognostic biomarker for male TC patients.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Haihong Shi
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Weigang Qiu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Liqiong Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Wenyi Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| |
Collapse
|
5
|
Lin D, Fan W, Zhang R, Zhao E, Li P, Zhou W, Peng J, Li L. Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med 2021; 19:279. [PMID: 34193202 PMCID: PMC8244251 DOI: 10.1186/s12967-021-02952-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic reprograming have been associated with cancer occurrence and progression within the tumor immune microenvironment. However, the prognostic potential of metabolism-related genes in colorectal cancer (CRC) has not been comprehensively studied. Here, we investigated metabolic transcript-related CRC subtypes and relevant immune landscapes, and developed a metabolic risk score (MRS) for survival prediction. METHODS Metabolism-related genes were collected from the Molecular Signatures Database and metabolic subtypes were identified using an unsupervised clustering algorithm based on the expression profiles of survival-related metabolic genes in GSE39582. The ssGSEA and ESTIMATE methods were applied to estimate the immune infiltration among subtypes. The MRS model was developed using LASSO Cox regression in the GSE39582 dataset and independently validated in the TCGA CRC and GSE17537 datasets. RESULTS We identified two metabolism-related subtypes (cluster-A and cluster-B) of CRC based on the expression profiles of 539 survival-related metabolic genes with distinct immune profiles and notably different prognoses. The cluster-B subtype had a shorter OS and RFS than the cluster-A subtype. Eighteen metabolism-related genes that were mostly involved in lipid metabolism pathways were used to build the MRS in GSE39582. Patients with higher MRS had worse prognosis than those with lower MRS (HR 3.45, P < 0.001). The prognostic role of MRS was validated in the TCGA CRC (HR 2.12, P = 0.00017) and GSE17537 datasets (HR 2.67, P = 0.039). Time-dependent receiver operating characteristic curve and stratified analyses revealed the robust predictive ability of the MRS in each dataset. Multivariate Cox regression analysis indicted that the MRS could predict OS independent of TNM stage and age. CONCLUSIONS Our study provides novel insight into metabolic heterogeneity and its relationship with immune landscape in CRC. The MRS was identified as a robust prognostic marker and may facilitate individualized therapy for CRC patients.
Collapse
Affiliation(s)
- Dagui Lin
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenhua Fan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Rongxin Zhang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Enen Zhao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Pansong Li
- Geneplus-Beijing, Beijing, 102206, China
| | - Wenhao Zhou
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Liren Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Comprehensive Analysis of Prognostic and Genetic Signatures for General Transcription Factor III (GTF3) in Clinical Colorectal Cancer Patients Using Bioinformatics Approaches. Curr Issues Mol Biol 2021; 43:cimb43010002. [PMID: 33925358 PMCID: PMC8935981 DOI: 10.3390/cimb43010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) has the fourth-highest incidence of all cancer types, and its incidence has steadily increased in the last decade. The general transcription factor III (GTF3) family, comprising GTF3A, GTF3B, GTF3C1, and GTFC2, were stated to be linked with the expansion of different types of cancers; however, their messenger (m)RNA expressions and prognostic values in colorectal cancer need to be further investigated. To study the transcriptomic expression levels of GTF3 gene members in colorectal cancer in both cancerous tissues and cell lines, we first performed high-throughput screening using the Oncomine, GEPIA, and CCLE databases. We then applied the Prognoscan database to query correlations of their mRNA expressions with the disease-specific survival (DSS), overall survival (OS), and disease-free survival (DFS) status of the colorectal cancer patient. Furthermore, proteomics expressions of GTF3 family members in clinical colorectal cancer specimens were also examined using the Human Protein Atlas. Finally, genomic alterations of GTF3 family gene expressions in colorectal cancer and their signal transduction pathways were studied using cBioPortal, ClueGO, CluePedia, and MetaCore platform. Our findings revealed that GTF3 family members' expressions were significantly correlated with the cell cycle, oxidative stress, WNT/β-catenin signaling, Rho GTPases, and G-protein-coupled receptors (GPCRs). Clinically, high GTF3A and GTF3B expressions were significantly correlated with poor prognoses in colorectal cancer patients. Collectively, our study declares that GTF3A was overexpressed in cancer tissues and cell lines, particularly colorectal cancer, and it could possibly step in as a potential prognostic biomarker.
Collapse
|
7
|
Bai Y, Wu H, Han B, Xu K, Liu Y, Liu Y, Miao S, Zhang Y, Zhou L. Long intergenic non-protein coding RNA-467 targets microRNA-451a in human colorectal cancer. Oncol Lett 2020; 20:124. [PMID: 32934693 PMCID: PMC7471755 DOI: 10.3892/ol.2020.11987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are frequently overexpressed in colorectal cancer (CRC). However, few related lncRNA signatures have been established for predicting CRC metastasis. The purpose of the present study was to identify lncRNAs that serve key roles in the metastasis of human CRC, and their potential downstream targets. A total of 31 human CRC biopsy samples were collected, and the expression of long intergenic non-protein coding RNA-467 (linc00467) and its association with clinical characteristics were evaluated. Consequently, linc00467 was revealed to be overexpressed in human CRC tissues, and its expression was significantly associated with metastasis and Tumor-Node-Metastasis stage. In HT29 and HCT116 cells, linc00467-knockout was revealed to decrease cellular proliferation and increase apoptosis (P<0.05). Finally, the downstream target of linc00467 in CRC promotion was predicted using bioinformatics analysis. The results demonstrated that linc00467 targets and regulates the expression of microRNA (miR)-451a, promoting carcinogenesis and metastasis in CRC. In conclusion, the results of the present study indicate that increased linc00467 expression promotes metastasis by targeting miR-451a, which ultimately increases cellular proliferation and inhibits apoptosis in human CRC cells.
Collapse
Affiliation(s)
- Yang Bai
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haiyan Wu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bin Han
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ke Xu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuanqi Liu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shikun Miao
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
Xu K, Han B, Bai Y, Ma XY, Ji ZN, Xiong Y, Miao SK, Zhang YY, Zhou LM. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis 2019; 10:152. [PMID: 30770794 PMCID: PMC6377610 DOI: 10.1038/s41419-019-1403-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 12/23/2018] [Accepted: 01/18/2019] [Indexed: 02/05/2023]
Abstract
The global morbidity and mortality of colorectal cancer (CRC) are ranked the third among gastrointestinal tumors in the world. MiR-451a is associated with several types of cancer, including CRC. However, the roles and mechanisms of miR-451a in CRC have not been elucidated. BAP31 is a predicted target gene of miR-451a in our suppression subtractive hybridization library. Its relationship with miR-451a and function in CRC are unclear. We hypothesized that miR-451a could induce apoptosis through suppressing BAP31 in CRC. Immunohistochemistry and real-time PCR were used to measure BAP31 expressions in CRC tissues and pericarcinous tissues from 57 CRC patients and CRC cell lines. Dual-luciferase reporter assay was used to detect the binding of miR-451a to BAP31. The expression of BAP31 protein in CRC tissues was significantly higher than that in pericarcinous tissues, which was correlated with distant metastasis and advanced clinical stages of CRC patients. The expression of BAP31 was higher in HCT116, HT29, SW620, and DLD cells than that in the normal colonic epithelial cell line NCM460. The expression of BAP31 was absolutely down-regulated when over-expressing miR-451a in HCT116 and SW620 cells compared with control cells. Mir-451a inhibited the expression of BAP31 by binding to its 5'-UTR. Over-expressing miR-451a or silencing BAP31 suppressed the proliferation and apoptosis of CRC cells by increasing the expressions of endoplasmic reticulum stress (ERS)-associated proteins, including GRP78/BIP, BAX, and PERK/elF2α/ATF4/CHOP, which resulted in increased ERS, cytoplasmic calcium ion flowing, and apoptosis of CRC cells. These changes resulting from over-expressing miR-451a were reversed by over-expressing BAP31 with mutated miR-451a-binding sites. Over-expressing miR-451a or silencing BAP31 inhibited tumor growth by inducing ERS. The present study demonstrated that miR-451a can inhibit proliferation and increase apoptosis through inducing ERS by binding to the 5'-UTR of BAP31 in CRC.
Collapse
Affiliation(s)
- Ke Xu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Han
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Bai
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Ying Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China
| | - Zhen-Ni Ji
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yao Xiong
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shi-Kun Miao
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan-Yuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
- 985 Science and Technology Platform for Innovative Drugs, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|