1
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Zhang J, Wang P, Cui Y. Long noncoding RNA NEAT1 inhibits the acetylation of PTEN through the miR-524-5p /HDAC1 axis to promote the proliferation and invasion of laryngeal cancer cells. Aging (Albany NY) 2021; 13:24850-24865. [PMID: 34837887 PMCID: PMC8660614 DOI: 10.18632/aging.203719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) is abnormally expressed in numerous tumors and functions as an oncogene, but the role of NEAT1 in laryngocarcinoma is largely unknown. Our study validated that NEAT1 expression was markedly upregulated in laryngocarcinoma tissues and cells. Downregulation of NEAT1 dramatically suppressed cell proliferation and invasion through inhibiting miR-524-5p expression. Additionally, NEAT1 overexpression promoted cell growth and metastasis, while overexpression of miR-524-5p could reverse the effect. NEAT1 increased the expression of histone deacetylase 1 gene (HDAC1) via sponging miR-524-5p. Mechanistically, overexpression of HDAC1 recovered the cancer-inhibiting effects of miR-524-5p mimic or NEAT1 silence by deacetylation of tensin homolog deleted on chromosome ten (PTEN) and inhibiting AKT signal pathway. Moreover, in vivo experiments indicated that silence of NEAT1 signally suppressed tumor growth. Taken together, knockdown of NEAT1 suppressed laryngocarcinoma cell growth and metastasis by miR-524-5p/HDAC1/PTEN/AKT signal pathway, which provided a potential therapeutic target for laryngocarcinoma.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Laboratory, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| | - Ping Wang
- Department of Hematology, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| | - Yanli Cui
- Department of Laboratory, The Affiliated Hospital of Henan Polytechnic University, The Second People's Hospital of Jiaozuo, Jiaozuo 454001, Henan, P.R. China
| |
Collapse
|
3
|
Mitsuda J, Tsujikawa T, Yoshimura K, Saburi S, Suetsugu M, Kitamoto K, Takenaka M, Ohmura G, Arai A, Ogi H, Itoh K, Hirano S. A 14-Marker Multiplexed Imaging Panel for Prognostic Biomarkers and Tumor Heterogeneity in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:713561. [PMID: 34490110 PMCID: PMC8417535 DOI: 10.3389/fonc.2021.713561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Recent advances made in treatment for head and neck squamous cell carcinoma (HNSCC) highlight the need for new prediction tools to guide therapeutic strategies. In this study, we aimed to develop a HNSCC-targeting multiplex immunohistochemical (IHC) panel that can evaluate prognostic factors and the intratumor heterogeneity of HNSCC. To identify IHC-based tissue biomarkers that constitute new multiplex IHC panel, a systematic review and meta-analysis were performed to analyze reported IHC biomarkers in laryngeal and pharyngeal SCC in the period of 2008–2018. The Cancer Genome Atlas (TCGA) and Reactome pathway databases were used to validate the prognostic and functional significance of the identified biomarkers. A 14-marker chromogenic multiplex IHC panel including identified biomarkers was used to analyze untreated HNSCC tissue. Forty-five high-quality studies and thirty-one candidate tissue biomarkers were identified (N = 7062). Prognostic validation in TCGA laryngeal and pharyngeal SCC cohort (N = 205) showed that β-catenin, DKK1, PINCH1, ADAM10, and TIMP1 were significantly associated with poor prognosis, which were related to functional categories such as immune system, cellular response, cell cycle, and developmental systems. Selected biomarkers were assembled to build a 14-marker panel, evaluating heterogeneity and polarized expression of tumor biomarkers in the tissue structures, which was particularly related to activation of Wnt/β-catenin pathway. Integrated IHC analysis based on a systemic review and meta-analysis provides an in situ proteomics tool to assess the aggressiveness and intratumor heterogeneity of HNSCC.
Collapse
Affiliation(s)
- Junichi Mitsuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Kanako Yoshimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sumiyo Saburi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaho Suetsugu
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kayo Kitamoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mari Takenaka
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Gaku Ohmura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihito Arai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Ma J, Hu X, Dai B, Wang Q, Wang H. Bioinformatics analysis of laryngeal squamous cell carcinoma: seeking key candidate genes and pathways. PeerJ 2021; 9:e11259. [PMID: 33954053 PMCID: PMC8052978 DOI: 10.7717/peerj.11259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is the second most aggressive head and neck squamous cell carcinoma. Although much work has been done to optimize its treatment, patients with LSCC still have poor prognosis. Therefore, figuring out differentially expressed genes (DEGs) contained in the progression of LSCC and employing them as potential therapeutic targets or biomarkers for LSCC is extremely meaningful. Methods Overlapping DEGs were screened from two standalone Gene Expression Omnibus datasets, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. By applying STRING and Cytoscape, a protein–protein network was built, and module analysis was carried out. The hub genes were selected by maximal clique centrality with the CytoHubba plugin of Cytoscape. UALCAN and GEPIA data were examined to validate the gene expression findings. Moreover, the connection of the hub genes with LSCC patient overall survival was studied employing The Cancer Genome Atlas. Then, western blot, qRT-PCR, CCK-8, wound healing and transwell assays were bring to use for further verify the key genes. Results A total of 235 DEGs were recorded, including 83 upregulated and 152 downregulated genes. A total of nine hub genes that displayed a high degree of connectivity were selected. UALCAN and GEPIA databases verified that these genes were highly expressed in LSCC tissues. High expression of the SPP1, SERPINE1 and Matrix metalloproteinases 1 (MMP1) genes was connected to worse prognosis in patients with LSCC, according to the GEPIA online tool. Western blot and qRT-PCR testify SPP1, SERPINE1 and MMP1 were upregulated in LSCC cells. Inhibition of SPP1, SERPINE1 and MMP1 suppressed cell proliferation, invasion and migration. Conclusion The work here identified effective and reliable diagnostic and prognostic molecular biomarkers by unified bioinformatics analysis and experimental verification, indicating novel and necessary therapeutic targets for LSCC.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaodong Hu
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Baoqiang Dai
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qiang Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hongqin Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
5
|
hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen. Sci Rep 2019; 9:19076. [PMID: 31836808 PMCID: PMC6911083 DOI: 10.1038/s41598-019-55665-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is thought to arise as prostate adenocarcinoma cells transdifferentiate into neuroendocrine (NE) cells to escape potent anti-androgen therapies however, the exact molecular events accompanying NE transdifferentiation and their plasticity remain poorly defined. Cell fate regulator ASCL1/hASH1's expression was markedly induced in androgen deprived (AD) LNCaP cells and prominent nuclear localisation accompanied acquisition of the NE-like morphology and expression of NE markers (NSE). By contrast, androgen-insensitive PC3 and DU145 cells displayed clear nuclear hASH1 localisation under control conditions that was unchanged by AD, suggesting AR signalling negatively regulated hASH1 expression and localisation. Synthetic androgen (R1881) prevented NE transdifferentiation of AD LNCaP cells and markedly suppressed expression of key regulators of lineage commitment and neurogenesis (REST and ASCL1/hASH1). Post-AD, NE LNCaP cells rapidly lost NE-like morphology following R1881 treatment, yet ASCL1/hASH1 expression was resistant to R1881 treatment and hASH1 nuclear localisation remained evident in apparently dedifferentiated LNCaP cells. Consequently, NE cells may not fully revert to an epithelial state and retain key NE-like features, suggesting a "hybrid" phenotype. This could fuel greater NE transdifferentiation, therapeutic resistance and NEPC evolution upon subsequent androgen deprivation. Such knowledge could facilitate CRPC tumour stratification and identify targets for more effective NEPC management.
Collapse
|
6
|
HPV16-Related Cervical Cancers and Precancers Have Increased Levels of Host Cell DNA Methylation in Women Living with HIV. Int J Mol Sci 2018; 19:ijms19113297. [PMID: 30360578 PMCID: PMC6274896 DOI: 10.3390/ijms19113297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Data on human papillomavirus (HPV) type-specific cervical cancer risk in women living with human immunodeficiency virus (WLHIV) are needed to understand HPV–HIV interaction and to inform prevention programs for this population. We assessed high-risk HPV type-specific prevalence in cervical samples from 463 WLHIV from South Africa with different underlying, histologically confirmed stages of cervical disease. Secondly, we investigated DNA hypermethylation of host cell genes ASCL1, LHX8, and ST6GALNAC5, as markers of advanced cervical disease, in relation to type-specific HPV infection. Overall, HPV prevalence was 56% and positivity increased with severity of cervical disease: from 28.0% in cervical intraepithelial neoplasia (CIN) grade 1 or less (≤CIN1) to 100% in invasive cervical cancer (ICC). HPV16 was the most prevalent type, accounting for 9.9% of HPV-positive ≤CIN1, 14.3% of CIN2, 31.7% of CIN3, and 45.5% of ICC. HPV16 was significantly more associated with ICC and CIN3 than with ≤CIN1 (adjusted for age, ORMH 7.36 (95% CI 2.33–23.21) and 4.37 (95% CI 1.81–10.58), respectively), as opposed to non-16 high-risk HPV types. Methylation levels of ASCL1, LHX8, and ST6GALNAC5 in cervical scrapes of women with CIN3 or worse (CIN3+) associated with HPV16 were significantly higher compared with methylation levels in cervical scrapes of women with CIN3+ associated with non-16 high-risk HPV types (p-values 0.017, 0.019, and 0.026, respectively). When CIN3 and ICC were analysed separately, the same trend was observed, but the differences were not significant. Our results confirm the key role that HPV16 plays in uterine cervix carcinogenesis, and suggest that the evaluation of host cell gene methylation levels may monitor the progression of cervical neoplasms also in WLHIV.
Collapse
|
7
|
Maurer KA, Kowalchuk A, Shoja-Taheri F, Brown NL. Integral bHLH factor regulation of cell cycle exit and RGC differentiation. Dev Dyn 2018; 247:965-975. [PMID: 29770538 PMCID: PMC6105502 DOI: 10.1002/dvdy.24638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the developing mouse embryo, the bHLH transcription factor Neurog2 is transiently expressed by retinal progenitor cells and required for the initial wave of neurogenesis. Remarkably, another bHLH factor, Ascl1, normally not present in the embryonic Neurog2 retinal lineage, can rescue the temporal phenotypes of Neurog2 mutants. RESULTS Here we show that Neurog2 simultaneously promotes terminal cell cycle exit and retinal ganglion cell differentiation, using mitotic window labeling and integrating these results with retinal marker quantifications. We also analyzed the transcriptomes of E12.5 GFP-expressing cells from Neurog2GFP/+ , Neurog2GFP/GFP , and Neurog2Ascl1KI/GFP eyes, and validated the most significantly affected genes using qPCR assays. CONCLUSIONS Our data support the hypothesis that Neurog2 acts at the top of a retinal bHLH transcription factor hierarchy. The combined expression levels of these downstream factors are sufficiently induced by ectopic Ascl1 to restore RGC genesis, highlighting the robustness of this gene network during retinal ganglion cell neurogenesis. Developmental Dynamics 247:965-975, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kate A. Maurer
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, 45229
| | - Angelica Kowalchuk
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616
| | - Farnaz Shoja-Taheri
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616
| | - Nadean L. Brown
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, 45229
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA 95616
| |
Collapse
|