1
|
Gupta S, Kumar A, Tejavath KK. A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is studied as one of the most lethal cancers with currently no control of its lethality, mainly due to its late diagnosis and lack of foolproof treatment processes. Despite continuous efforts being made in looking for therapies to deal with cancer, it keeps on being a labyrinth for the researchers. Efforts like discovering new treatment options, repurposing existing drugs, are continuously made to deal with this cancer.
Main body
With the urge to get answers and the fact that nature has all roots of therapeutics, efforts are made in the direction of finding those answers for providing ministrations for pancreatic cancer from plant products. Plant products are used as treatment options either directly in the form of extracts or an alternative to them is individual phytochemicals that are either isolated from the plants or are commercially synthesized for various purposes. In this review, we put forward such pharmacognostic initiatives made in combating pancreatic cancer, focusing mainly on plant extracts and various phytochemicals; along with the mechanisms which they triggered to fulfill the need for cytotoxicity to pancreatic cancer cells (in vitro and in vivo).
Conclusion
This study will thus provide insights into new combination therapy that can be used and also give a clue on which plant product and phytoconstituent can be used in dealing with pancreatic cancer.
Graphical abstract
Collapse
|
2
|
Theofylaktou D, Takan I, Karakülah G, Biz GM, Zanni V, Pavlopoulou A, Georgakilas AG. Mining Natural Products with Anticancer Biological Activity through a Systems Biology Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993518. [PMID: 34422220 PMCID: PMC8376429 DOI: 10.1155/2021/9993518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Natural products, like turmeric, are considered powerful antioxidants which exhibit tumor-inhibiting activity and chemoradioprotective properties. Nowadays, there is a great demand for developing novel, affordable, efficacious, and effective anticancer drugs from natural resources. In the present study, we have employed a stringent in silico methodology to mine and finally propose a number of natural products, retrieved from the biomedical literature. Our main target was the systematic search of anticancer products as anticancer agents compatible to the human organism for future use. In this case and due to the great plethora of such products, we have followed stringent bioinformatics methodologies. Our results taken together suggest that natural products of a great diverse may exert cytotoxic effects in a maximum of the studied cancer cell lines. These natural compounds and active ingredients could possibly be combined to exert potential chemopreventive effects. Furthermore, in order to substantiate our findings and their application potency at a systems biology level, we have developed a representative, user-friendly, publicly accessible biodatabase, NaturaProDB, containing the retrieved natural resources, their active ingredients/fractional mixtures, the types of cancers that they affect, and the corresponding experimentally verified target genes.
Collapse
Affiliation(s)
- Dionysia Theofylaktou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir, Turkey
| | - Vaso Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
3
|
Yang C, Chen SJ, Chen BW, Zhang KW, Zhang JJ, Xiao R, Li PG. Gene Expression Profile of the Human Colorectal Carcinoma LoVo Cells Treated With Sporamin and Thapsigargin. Front Oncol 2021; 11:621462. [PMID: 34113558 PMCID: PMC8185278 DOI: 10.3389/fonc.2021.621462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 μM of thapsigargin (TG), or 1 μM of TG plus 30 μM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Si-Jia Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Bo-Wen Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Kai-Wen Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Jing-Jie Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China.,National Center for Child Nutriment Quality Supervision and Testing, China National Children's Center, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| |
Collapse
|
4
|
Novel therapeutic strategies and perspectives for pancreatic cancer: Autophagy and apoptosis are key mechanisms to fight pancreatic cancer. Med Oncol 2021; 38:74. [PMID: 34019188 DOI: 10.1007/s12032-021-01522-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the most lethal malignancy of the gastrointestinal tract. The poor prognosis of patients with PC is primarily due to lack of effective treatments against its progressive and metastatic behavior. Hence, figuring out the mechanisms underlying PC development and putting up with effective targeted therapies are of great significance to improve the prognosis of patients with PC. Apoptosis and autophagy serve to maintain tissue homoeostasis. Escaping from apoptosis or autophagy is one of the features of malignancy. PC is seriously resistant to autophagy and apoptosis, which explains its invasiveness and resistance to conventional treatment. Recently, several biological activities and pharmacological functions found in natural product extracts have been reported to inhibit PC progression. The current review focuses on understanding natural product extracts and their derivatives as one kind of novel treatments through affecting the apoptosis or autophagy in PC.
Collapse
|
5
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Delma CR, Thirugnanasambandan S, Srinivasan GP, Raviprakash N, Manna SK, Natarajan M, Aravindan N. Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53 - NFκB crosstalk. PHYTOCHEMISTRY 2019; 167:112078. [PMID: 31450091 DOI: 10.1016/j.phytochem.2019.112078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Poor pancreatic cancer (PC) prognosis has been attributed to its resistance to apoptosis and propensity for early systemic dissemination. Existing therapeutic strategies are often circumvented by the molecular crosstalk between cell-signalling pathways. p53 is mutated in more than 50% of PC and NFκB is constitutively activated in therapy-resistant residual disease; these mutations and activations account for the avoidance of cell death and metastasis. Recently, we demonstrated the anti-PC potential of fucoidan extract from marine brown alga, Turbinaria conoides (J. Agardh) Kützing (Sargassaceae). In this study, we aimed to characterize the active fractions of fucoidan extract to identify their select anti-PC efficacy, and to define the mechanism(s) involved. Five fractions of fucoidan isolated by ion exchange chromatography were tested for their potential in genetically diverse human PC cell lines. All fractions exerted significant dose-dependent and time-dependent regulation of cell survival. Fucoidans induced apoptosis, activated caspase -3, -8 and -9, and cleaved Poly ADP ribose polymerase (PARP). Pathway-specific transcriptional analysis recognized inhibition of 57 and 38 nuclear factor κB (NFκB) pathway molecules with fucoidan-F5 in MiaPaCa-2 and Panc-1 cells, respectively. In addition, fucoidan-F5 inhibited both the constitutive and Tumor necrosis factor-α (TNFα)-mediated NFκB DNA-binding activity in PC cells. Upregulation of cytoplasmic IκB levels and significant reduction of NFκB-dependent luciferase activity further substantiate the inhibitory potential of seaweed fucoidans on NFκB. Moreover, fucoidan(s) treatment increased cellular p53 in PC cells and reverted NFκB forced-expression-related p53 reduction. The results suggest that fucoidan regulates PC progression and that fucoidans may target p53-NFκB crosstalk and dictate apoptosis in PC cells.
Collapse
Affiliation(s)
- Caroline R Delma
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India; Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA.
| | | | - Guru Prasad Srinivasan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India
| | - Nune Raviprakash
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Sunil K Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Chen H, Zhang H, Tian J, Shi J, Linhardt RJ, Ye TDX, Chen S. Recovery of High Value-Added Nutrients from Fruit and Vegetable Industrial Wastewater. Compr Rev Food Sci Food Saf 2019; 18:1388-1402. [PMID: 33336910 DOI: 10.1111/1541-4337.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023]
Abstract
The industrial processing water of fruit and vegetables has raised serious environmental concerns due to the presence of many important bioactive compounds being disposed in the wastewater. Bioactive compounds have great potential for the food industry to optimize their process and to recover these compounds in order to develop value-added products and to reduce environmental impacts. However, to achieve this goal, some challenges need to be addressed such as safety assurance, technology request, product regulations, cost effectiveness, and customer factors. Therefore, this review aims to summarize the recent advances of bioactive compounds recovery and the current challenges in wastewater from fruit and vegetable processing industry, including fruit and beverage, soybean by-products, starch and edible oil industry. Moreover, future direction for novel and green technology of bioactive compounds recovery are discussed, and a prospect of bioactive compounds reuse and sustainable development is proposed.
Collapse
Affiliation(s)
- Honglin Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Hua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Inst., Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Tian Ding Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, China
| |
Collapse
|
8
|
Yang C, Zhang JJ, Zhang XP, Xiao R, Li PG. Sporamin suppresses growth of xenografted colorectal carcinoma in athymic BALB/c mice by inhibiting liver β-catenin and vascular endothelial growth factor expression. World J Gastroenterol 2019; 25:3196-3206. [PMID: 31333311 PMCID: PMC6626725 DOI: 10.3748/wjg.v25.i25.3196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/14/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common malignancy of the digestive tract and the fifth leading cause of cancer-related mortality in China. Sporamin, a Kunitz-type trypsin inhibitor isolated from sweet potato, is a potential anti-cancer agent with activities against a number of malignant tumor cells in vitro. The liver secretes a myriad of endocrine factors that may facilitate the growth and transformation of tumors in the development of CRC.
AIM To investigate the effects of sporamin on liver morphology and biomarkers of xenografted CRC in the liver of athymic BALB/c mice.
METHODS Twenty-seven male BALB/c nude mice were randomly divided into control, vehicle, and sporamin groups. Mice in the latter two groups were intraperitoneally xenografted with LoVo colorectal carcinoma cells and intragastrically infused with saline or sporamin (0.5 g/kg body weight/d), respectively, for 3 wk. Hematoxylin and eosin (HE) staining of the sections was performed to observe morphological changes in hepatic tissue and real-time fluorescent quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to measure the expression of β-catenin and vascular endothelial growth factor (VEGF) in the liver.
RESULTS Sporamin significantly reduced the number and weight of tumor nodules formed in the abdominal cavity. Compared with the vehicle group, the mean tumor weight (± SD) in the sporamin group was significantly reduced (0.44 ± 0.10 g vs 0.26 ± 0.15 g) and the total number of tumors decreased from 93 to 55. HE staining showed that enlargement of the nucleus and synthesis of proteins within hepatocytes, as well as infiltration of inflammatory cells into the liver, were attenuated by sporamin. Immunohistochemical staining and ELISA showed that the concentrations of β-catenin and VEGF in the liver were significantly reduced by sporamin. Compared with the vehicle group, the expression of β-catenin measured in integrated optical density units per area was reduced in the sporamin group (47.29 ± 9.10 vs 26.14 ± 1.72; P = 0.003). Expression of VEGF was also reduced after sporamin intervention from 20.78 ± 2.06 in the vehicle group to 15.80 ± 1.09 in the sporamin group (P = 0.021). Compared with the vehicle group, the concentration of β-catenin decreased from 134.42 ± 22.04 pg/mL to 109.07 ± 9.65 pg/mL after sporamin intervention (P = 0.00002). qPCR indicated that compared to the vehicle group, relative mRNA expression of β-catenin and VEGF in the liver of mice in the sporamin-treated group was significantly reduced to 71% ± 1% (P = 0.000001) and 23% ± 7% (P = 0.00002), respectively, of the vehicle group levels.
CONCLUSION Sporamin down-regulates the expression and secretion of β-catenin and VEGF in the liver, which subsequently inhibits the transcription of downstream genes involved in cancer progression and angiogenesis.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Jing-Jie Zhang
- School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Xiao-Peng Zhang
- School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| |
Collapse
|
9
|
Xing J, Xie T, Tan W, Li R, Yu C, Han X. microRNA‐183 improve myocardial damager via NF‐kb pathway: In vitro and in vivo study. J Cell Biochem 2018; 120:10145-10154. [PMID: 30548682 DOI: 10.1002/jcb.28298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/20/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Jie Xing
- Department of Cardiac surgery Hainan General Hospital Haikou Hainan China
| | - Ting Xie
- Department of Cardiac surgery Hainan General Hospital Haikou Hainan China
| | - Wei Tan
- Department of Cardiac surgery Hainan General Hospital Haikou Hainan China
| | - Ruzheng Li
- Department of Cardiac surgery Hainan General Hospital Haikou Hainan China
| | - Cheng Yu
- Department of Cardiac surgery Hainan General Hospital Haikou Hainan China
| | - Xiaohu Han
- Department of Cardiac surgery Hainan General Hospital Haikou Hainan China
| |
Collapse
|
10
|
Liu L, Ahn KS, Shanmugam MK, Wang H, Shen H, Arfuso F, Chinnathambi A, Alharbi SA, Chang Y, Sethi G, Tang FR. Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptor–negative breast cancer cells. J Cell Biochem 2018; 120:4504-4513. [DOI: 10.1002/jcb.27738] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Lian Liu
- Department of Pharmacology Medical School of Yangtze University Jingzhou China
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Kwang Seok Ahn
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University Seoul Korea
| | - Muthu K Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Hong Wang
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| | - Hongyuan Shen
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
| | - Yung Chang
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University Taoyuan Taiwan
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Feng Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| |
Collapse
|
11
|
Platinum-induced muscle wasting in cancer chemotherapy: Mechanisms and potential targets for therapeutic intervention. Life Sci 2018; 208:1-9. [PMID: 30146014 DOI: 10.1016/j.lfs.2018.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023]
Abstract
Platinum-based drugs are among the most effective anticancer therapies, integrating the standard of care for numerous human malignancies. However, platinum-based chemotherapy induces severe side-effects in cancer patients, such as cachexia. Weight loss, as well as fatigue and systemic inflammation are characteristics of this syndrome that adversely affects the survival and the quality of life of cancer patients. The signalling pathways involved in chemotherapy-induced cachexia are still to be fully understood, but the activity of several mediators associated with muscle wasting, such as myostatin and pro-inflammatory cytokines are increased by platinum-based drugs like cisplatin. Indeed, the molecular mechanisms behind chemotherapy-induced muscle wasting seem to be similar to the ones promoted by cancer in treatment-naive patients. Although some therapeutic agents are under investigation for treating muscle wasting in cancer patients, no effective treatment is yet available. Herein, we review the molecular mechanisms proposed to be involved in chemotherapy-related muscle wasting with a focus on the typical platinum-based drug cisplatin. Therapeutic strategies presently under investigation are also reviewed, providing an overview of the current efforts to preserve muscle mass and quality of life among cancer patients.
Collapse
|
12
|
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 2018; 11:2063-2073. [PMID: 29695914 PMCID: PMC5905465 DOI: 10.2147/ott.s161109] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a group of cells that malignantly grow and proliferate uncontrollably. At present, treatment modes for cancer mainly comprise surgery, chemotherapy, radiotherapy, molecularly targeted therapy, gene therapy, and immunotherapy. However, the curative effects of these treatments have been limited thus far by specific characteristics of tumors. Abnormal activation of signaling pathways is involved in tumor pathogenesis and plays critical roles in growth, progression, and relapse of cancers. Targeted therapies against effectors in oncogenic signaling have improved the outcomes of cancer patients. NFκB is an important signaling pathway involved in pathogenesis and treatment of cancers. Excessive activation of the NFκB-signaling pathway has been documented in various tumor tissues, and studies on this signaling pathway for targeted cancer therapy have become a hot topic. In this review, we update current understanding of the NFκB-signaling pathway in cancer.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Lu Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Department of Medical Microbiology, Immunology, and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Yang T, Li S, Liu J, Yin D, Yang X, Tang Q. lncRNA-NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation, invasion, and radioresistance. Cancer Med 2018; 7:2048-2063. [PMID: 29573243 PMCID: PMC5943486 DOI: 10.1002/cam4.1405] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 12/26/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Laryngeal cancer is one of the most common head and neck malignant tumors and is commonly resistant to X‐ray‐based radiotherapy. NF‐κB interacting lncRNA (NKILA) has been reported to serve as a tumor suppressor in several cancers through combining with NF‐κB: IκB complex thereby inhibiting NF‐κB activation. Herein, we demonstrated a low NKILA expression in laryngeal cancer and its correlation with shorter overall survival in patients with laryngeal cancer. NKILA serves as a tumor suppressor in laryngeal cancer by suppressing laryngeal cancer cell viability and migration, whereas promoting cell apoptosis; NKILA knockdown reverses the cytotoxicity of X‐ray radiation on laryngeal cancer cells through combining with NF‐κB: IκB complex to inhibit IκB phosphorylation, inhibit p65 nuclear translocation, and finally inhibit NF‐κB activation. NF‐κB binds to the promoter region of NKILA to activate its transcriptional activity, upregulated NKILA then inhibits IκB phosphorylation and NF‐κB activation, thus forming a negative feedback loop to sensitize laryngeal cancer cell to X‐ray radiation. In conclusion, NKILA can serve as a promising agent of enhancing the cytotoxicity of X‐ray radiation on laryngeal cancer and addressing the radioresistance of laryngeal cancer.
Collapse
Affiliation(s)
- Tao Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiajia Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Danhui Yin
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|