1
|
Lopes C, Chaves J, Ortigão R, Dinis‐Ribeiro M, Pereira C. Gastric cancer detection by non-blood-based liquid biopsies: A systematic review looking into the last decade of research. United European Gastroenterol J 2022; 11:114-130. [PMID: 36461757 PMCID: PMC9892482 DOI: 10.1002/ueg2.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) screening is arguable in most Western countries. Liquid biopsies are a great promise to answer the unmet need for less invasive diagnostic biomarkers in GC. Thus, we aimed at systematically reviewing the current knowledge on liquid biopsy-based biomarkers in GC screening. A systematic search on PubMed/MEDLINE and Scopus databases was performed on published articles reporting the use of non-blood specimen (saliva, gastric juice [GJ], urine and stool) on GC diagnosis. 3208 records were retrieved by June 2022. After removal of duplicate records, 2379 abstracts were screened, and 84 full texts included in this systematic review. More than 90% of studies were reported on Asian populations. Overall, 9 studies explored stool-, 12 saliva-, and 29 urine-derived biomarkers for GC detection. Additionally, 37 studies, representing the majority, analyzed GJ, focusing on nucleic acid molecules. Several miRNAs and lncRNA molecules have been associated with GC risk, particularly miR-21 (area under the curve [AUC] = 0.97, 95% CI: 0.94-1.00). Considering salivary biomarkers, the best described model in validation sets included the soybean agglutinin and Vicia villosa agglutinin lectins (AUC = 0.89, 95% CI: 0.80-0.99). Most studies in urine carried out metabolomic approaches, with two discriminatory models presenting AUC values superior to 0.97. This systematic review emphasizes the potential role of non-blood-based biomarkers, although further validation, particularly in Western countries, is mandatory, namely for non-invasive screening and/or monitoring, as well as the use of GJ as a tool to enhance upper gastrointestinal endoscopy accuracy.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,CINTESIS – Center for Health Technology and Services ResearchUniversity of PortoPortoPortugal,ICBAS‐UP – Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
| | - Jéssica Chaves
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Raquel Ortigão
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Mário Dinis‐Ribeiro
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,Department of GastroenterologyPortuguese Oncology Institute of PortoPortoPortugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management GroupResearch Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group)Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)PortoPortugal,CINTESIS – Center for Health Technology and Services ResearchUniversity of PortoPortoPortugal
| |
Collapse
|
2
|
Zhang WL, Zhang JB, Wang TM, Wu YX, He YQ, Xue WQ, Liao Y, Deng CM, Li DH, Wu ZY, Yang DW, Zheng XH, Li XZ, Zhou T, Zhang PF, Zhang SD, Hu YZ, Jia WH. Genomic landscape of Epstein–Barr virus in familial nasopharyngeal carcinoma. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To better understand the genomic characteristics of Epstein–Barr virus (EBV) in familial nasopharyngeal carcinoma (NPC), we sequenced the EBV genomes by whole-genome capture in 38 unrelated patients with NPC family history in first-degree relatives and 47 healthy controls, including 13 with family history and 34 without. Compared with type 1 reference genome, mutation hotspots were observed in the latent gene regions of EBV in familial NPC cases. Population structure analysis showed that one cluster has a higher frequency in familial cases than in controls (OR=5.33, 95 % CI 2.50–11.33, P=1.42×10−5), and similar population structure composition was observed among familial and sporadic NPC cases in high-endemic areas. By genome-wide association analysis, four variants were found to be significantly associated with familial NPC. Consistent results were observed in the meta-analysis integrating two published case-control EBV sequencing studies in NPC high-endemic areas. High-risk haplotypes of EBV composed of 34 variants were associated with familial NPC risk (OR=13.85, 95 % CI 4.13–46.44, P=2.06×10−5), and higher frequency was observed in healthy blood-relative controls with NPC family history (9/13, 69.23 %) than those without family history (16/34, 47.06%). This study suggested the potential contribution of EBV high-risk subtypes to familial aggregation of NPC.
Collapse
Affiliation(s)
- Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
3
|
Liu Y, Lu Z, Huang H. Genome-Wide Profiling of Epstein-Barr Virus (EBV) Isolated from EBV-Related Malignancies. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein–Barr virus (EBV) is the cause of certain cancers, such as Burkitt lymphoma, Hodgkin lymphoma, NK/T cell lymphoma, nasopharyngeal carcinoma, and a subset of gastric carcinomas. The genome-wide characteristics of EBV are essential to understand the diversity of strains isolated from EBV-related malignancies, provide the first opportunity to test the general validity of the EBV genetic map and explore recombination, geographic variation, and the major features of variation in this virus. Moreover, understanding more about EBV sequence variations isolated from EBV-related malignancies might give important implications for the development of effective prophylactic and therapeutic vaccine approaches targeting the personalized or geographic-specific EBV antigens in these aggressive diseases. In this chapter, we will mainly focus on the EBV genome-wide profiling in three common EBV-related cancers in Asia, including nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and NK/T-cell lymphoma.
Collapse
|
4
|
Cirac A, Poirey R, Dieckmeyer M, Witter K, Delecluse HJ, Behrends U, Mautner J. Immunoinformatic Analysis Reveals Antigenic Heterogeneity of Epstein-Barr Virus Is Immune-Driven. Front Immunol 2021; 12:796379. [PMID: 34975903 PMCID: PMC8716887 DOI: 10.3389/fimmu.2021.796379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
Whole genome sequencing of Epstein-Barr virus (EBV) isolates from around the world has uncovered pervasive strain heterogeneity, but the forces driving strain diversification and the impact on immune recognition remained largely unknown. Using a data mining approach, we analyzed more than 300 T-cell epitopes in 168 published EBV strains. Polymorphisms were detected in approximately 65% of all CD8+ and 80% of all CD4+ T-cell epitopes and these numbers further increased when epitope flanking regions were included. Polymorphisms in CD8+ T-cell epitopes often involved MHC anchor residues and resulted in changes of the amino acid subgroup, suggesting that only a limited number of conserved T-cell epitopes may represent generic target antigens against different viral strains. Although considered the prototypic EBV strain, the rather low degree of overlap with most other viral strains implied that B95.8 may not represent the ideal reference strain for T-cell epitopes. Instead, a combinatorial library of consensus epitopes may provide better targets for diagnostic and therapeutic purposes when the infecting strain is unknown. Polymorphisms were significantly enriched in epitope versus non-epitope protein sequences, implicating immune selection in driving strain diversification. Remarkably, CD4+ T-cell epitopes in EBNA2, EBNA-LP, and the EBNA3 family appeared to be under negative selection pressure, hinting towards a beneficial role of immune responses against these latency type III antigens in virus biology. These findings validate this immunoinformatics approach for providing novel insight into immune targets and the intricate relationship of host defense and virus evolution that may also pertain to other pathogens.
Collapse
Affiliation(s)
- Ana Cirac
- Children’s Hospital, School of Medicine, Technische Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Remy Poirey
- German Cancer Research Center (DKFZ) Unit F100 and Institut National de la Santé et de la Recherche Médicale Unit U1074, Heidelberg, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Technische Universität München, Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics, Ludwig-Maximilians-Universität, München, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ) Unit F100 and Institut National de la Santé et de la Recherche Médicale Unit U1074, Heidelberg, Germany
| | - Uta Behrends
- Children’s Hospital, School of Medicine, Technische Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Josef Mautner
- Children’s Hospital, School of Medicine, Technische Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Josef Mautner,
| |
Collapse
|
5
|
Comprehensive Evolutionary Analysis of Complete Epstein-Barr Virus Genomes from Argentina and Other Geographies. Viruses 2021; 13:v13061172. [PMID: 34207433 PMCID: PMC8235469 DOI: 10.3390/v13061172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
The sequence variability of the Epstein–Barr virus has been extensively studied throughout previous years in isolates from various geographic regions and consequent variations at both genetic and genomic levels have been described. However, isolates from South America were underrepresented in these studies. Here, we sequenced 15 complete EBV genomes that we analyzed together with publicly available raw NGS data for 199 EBV isolates from other parts of the globe by means of a custom-built bioinformatic pipeline. The phylogenetic relations of the genomes, the geographic structure and variability of the data set, and the evolution rates for the whole genome and each gene were assessed. The present work contributes to overcoming the scarcity of complete EBV genomes from South America and is the most comprehensive geography-related variability study, which involved determining the actual contribution of each EBV gene to the geographic segregation of the entire genome. Moreover, to the best of our knowledge, we established for the first time the evolution rate for the entire EBV genome based on a host–virus codivergence-independent assumption and assessed their evolution rates on a gene-by-gene basis, which were related to the encoded protein function. Considering the evolution of dsDNA viruses with a codivergence-independent approach may lay the basis for future research on EBV evolution. The exhaustive bioinformatic analysis performed on this new dataset allowed us to draw a novel set of conclusions regarding the genome evolution of EBV.
Collapse
|
6
|
Maloney EM, Busque VA, Hui ST, Toh J, Fernandez-Vina M, Krams SM, Esquivel CO, Martinez OM. Genomic variations in EBNA3C of EBV associate with posttransplant lymphoproliferative disorder. JCI Insight 2020; 5:131644. [PMID: 32213705 DOI: 10.1172/jci.insight.131644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/26/2020] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a ubiquitous virus linked to a variety of lymphoid and epithelial malignancies. In solid organ and hematopoietic stem cell transplant recipients, EBV is causally associated with posttransplant lymphoproliferative disorder (PTLD), a group of heterogeneous lymphoid diseases. EBV+ B cell lymphomas that develop in the context of PTLD are generally attributed to the immunosuppression required to promote graft survival, but little is known regarding the role of EBV genome diversity in the development of malignancy. We deep-sequenced the EBV genome from the peripheral blood of 18 solid organ transplant recipients, including 6 PTLD patients. Sequences from 6 EBV+ spontaneous lymphoblastoid B cell lines (SLCL) were similarly analyzed. The EBV genome from PTLD patients had a significantly greater number of variations than EBV from transplant recipients without PTLD. Importantly, there were 15 nonsynonymous variations, including 8 in the latent cycle gene EBNA3C that were associated with the development of PTLD. One of the nonsynonymous variations in EBNA3C is located within a previously defined T cell epitope. These findings suggest that variations in the EBV genome can contribute to the pathogenesis of PTLD.
Collapse
Affiliation(s)
| | - Vincent A Busque
- Division of Abdominal Transplantation, Department of Surgery, and
| | - Sin Ting Hui
- Division of Abdominal Transplantation, Department of Surgery, and
| | | | - Marcelo Fernandez-Vina
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sheri M Krams
- Stanford Immunology.,Division of Abdominal Transplantation, Department of Surgery, and
| | | | - Olivia M Martinez
- Stanford Immunology.,Division of Abdominal Transplantation, Department of Surgery, and
| |
Collapse
|
7
|
Preoperative Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio and Lymphocyte-Monocyte Ratio in Peripheral Blood of Patients with Gastrointestinal Malignant Lesions. CURRENT HEALTH SCIENCES JOURNAL 2020; 45:285-290. [PMID: 32042456 PMCID: PMC6993767 DOI: 10.12865/chsj.45.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023]
Abstract
Local inflammation plays a very important role in the apparition and development of tumors and metastasis. The objective of this study was to investigate the significance of neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR) and platelet to lymphocyte ratio (PLR) in peripheral blood of patients with gastrointestinal malignant tumors. Methods: Medical records of 145 patients diagnosed with gastrointestinal malignant tumor between January 2017 and December 2017 were analyzed retrospectively. Pretreatment neutrophil, lymphocyte, platelet and monocyte counts and NLR, LMR and PLR were investigated. Results: The mean for NLR, PLR and LMR in patients with gastrointestinal cancer were determined. Conclusions: Determination of NLR, PLR and LMR can be easily done with a simple blood test and may be useful inflammatory markers as in our study we have observed the presence of increased inflammatory response in patients with gastrointestinal cancer.
Collapse
|
8
|
Dharnidharka VR, Ruzinova MB, Chen C, Parameswaran P, O'Gorman H, Goss CW, Gu H, Storch GA, Wylie K. Metagenomic analysis of DNA viruses from posttransplant lymphoproliferative disorders. Cancer Med 2019; 8:1013-1023. [PMID: 30697958 PMCID: PMC6434222 DOI: 10.1002/cam4.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/15/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLDs), 50%-80% of which are strongly associated with Epstein-Barr virus (EBV), carry a high morbidity and mortality. Most clinical/epidemiological/tumor characteristics do not consistently associate with worse patient survival, so our aim was to identify if other viral genomic characteristics associated better with survival. We extracted DNA from stored paraffin-embedded PTLD tissues at our center, identified viral sequences by metagenomic shotgun sequencing (MSS), and analyzed the data in relation to clinical outcomes. Our study population comprised 69 PTLD tissue samples collected between 1991 and 2015 from 60 subjects. Nucleotide sequences from at least one virus were detected by MSS in 86% (59/69) of the tissues (EBV in 61%, anelloviruses 52%, gammapapillomaviruses 14%, CMV 7%, and HSV in 3%). No viruses were present in higher proportion in EBV-negative PTLD (compared to EBV-positive PTLD). In univariable analysis, death within 5 years of PTLD diagnosis was associated with anellovirus (P = 0.037) and gammapapillomavirus (P = 0.036) detection by MSS, higher tissue qPCR levels of the predominant human anellovirus species torque teno virus (TTV; P = 0.016), T cell type PTLD, liver, brain or bone marrow location. In multivariable analyses, T cell PTLD (P = 0.006) and TTV PCR level (P = 0.012) remained significant. In EBV-positive PTLD, EBNA-LP, EBNA1 and EBNA3C had significantly higher levels of nonsynonymous gene variants compared to the other EBV genes. Multiple viruses are detectable in PTLD tissues by MSS. Anellovirus positivity, not EBV positivity,was associated with worse patient survival in our series. Confirmation and extension of this work in larger multicenter studies is desirable.
Collapse
Affiliation(s)
- Vikas R. Dharnidharka
- Division of Pediatric NephrologyWashington University School of MedicineSt LouisMOUSA
| | - Marianna B. Ruzinova
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMOUSA
| | - Chun‐Cheng Chen
- Department of SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Priyanka Parameswaran
- Division of Pediatric NephrologyWashington University School of MedicineSt LouisMOUSA
| | - Harry O'Gorman
- Division of Pediatric NephrologyWashington University School of MedicineSt LouisMOUSA
| | - Charles W. Goss
- Department of BiostatisticsWashington University School of MedicineSt LouisMOUSA
| | - Hongjie Gu
- Department of BiostatisticsWashington University School of MedicineSt LouisMOUSA
| | - Gregory A. Storch
- Division of Pediatric Infectious DiseasesWashington University School of MedicineSt LouisMOUSA
| | - Kristine Wylie
- Division of Pediatric Infectious DiseasesWashington University School of MedicineSt LouisMOUSA
- McDonnell Genome InstituteWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
9
|
Corvalán AH, Ruedlinger J, de Mayo T, Polakovicova I, Gonzalez-Hormazabal P, Aguayo F. The Phylogeographic Diversity of EBV and Admixed Ancestry in the Americas⁻Another Model of Disrupted Human-Pathogen Co-Evolution. Cancers (Basel) 2019; 11:cancers11020217. [PMID: 30769835 PMCID: PMC6406347 DOI: 10.3390/cancers11020217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is an etiological agent for gastric cancer with significant worldwide variations. Molecular characterizations of EBV have shown phylogeographical variations among healthy populations and in EBV-associated diseases, particularly the cosegregated BamHI-I fragment and XhoI restriction site of exon 1 of the LMP-1 gene. In the Americas, both cosegregated variants are present in EBV carriers, which aligns with the history of Asian and European human migration to this continent. Furthermore, novel recombinant variants have been found, reflecting the genetic makeup of this continent. However, in the case of EBV-associated gastric cancer (EBV-associated GC), the cosegregated European BamHI-“i” fragment and XhoI restriction site strain prevails. Thus, we propose that a disrupted coevolution between viral phylogeographical strains and mixed human ancestry in the Americas might explain the high prevalence of this particular gastric cancer subtype. This cosegregated region contains two relevant transcripts for EBV-associated GC, the BARF-1 and miR-BARTs. Thus, genome-wide association studies (GWAS) or targeted sequencing of both transcripts may be required to clarify their role as a potential source of this disrupted coevolution.
Collapse
Affiliation(s)
- Alejandro H Corvalán
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Jenny Ruedlinger
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Tomas de Mayo
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Faculty of Sciences, School of Medicine, Universidad Mayor, Santiago 7510041, Chile.
| | - Iva Polakovicova
- Department of Hematology and Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
| | - Patricio Gonzalez-Hormazabal
- Program of Human Genetics, Instituto Ciencias Biomedicas, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Catolica de Chile, Santiago 8330034, Chile.
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
10
|
Fattahi S, Kosari‐Monfared M, Ghadami E, Golpour M, Khodadadi P, Ghasemiyan M, Akhavan‐Niaki H. Infection‐associated epigenetic alterations in gastric cancer: New insight in cancer therapy. J Cell Physiol 2018; 233:9261-9270. [DOI: 10.1002/jcp.27030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- North Research Center, Pasteur Institute Amol Iran
| | | | - Elham Ghadami
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science Sari Iran
| | - Parastoo Khodadadi
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Mohammad Ghasemiyan
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| | - Haleh Akhavan‐Niaki
- Department of Genetics Faculty of Medicine, Babol University of Medical Sciences Babol Iran
| |
Collapse
|