1
|
Zhang J, Gao Q, Hou S, Chi X, Zheng M, Zhang Q, Shan H, Zhang X, Kang C. Role of PAX6, TRPA1, BCL11B, MCOLN2, CUX1, EMX1 in colorectal cancer and osteosarcoma. Medicine (Baltimore) 2024; 103:e37056. [PMID: 38306561 PMCID: PMC10843516 DOI: 10.1097/md.0000000000037056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024] Open
Abstract
Colorectal cancer is a cancer that arises from the abnormal growth of cells in the colon or rectum. Osteosarcoma (OS) is a common primary bone tumor with high degree of malignancy. The configuration files for colorectal cancer dataset GSE142279 and OS datasets GSE197158 and GSE206448 were downloaded from Gene Expression Omnibus database using the platforms GPL20795, GPL20301, and GPL24676. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interactions (PPI) network. Functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. A heat map of gene expression was drawn. The Comparative Toxicogenomics Database (CTD) was used to find the diseases most associated with the core genes. TargetScan was used to screen miRNAs regulating DEGs. According to the Gene Ontology (GO) analysis, DEGs are mainly enriched in acetylcholine binding receptor activity involved in Wnt signaling pathway, cell polarity pathway, PI3K-Akt signaling pathway, receptor regulator activity, cytokine-cytokine receptor interaction, transcriptional misregulation in cancer, and inflammation-mediated regulation of tryptophan transport. In the Metascape enrichment analysis, GO enrichment items related to the regulation of Wnt signaling pathway, regulation of muscle system process, and regulation of actin filament-based movement. Eight core genes (CUX1, NES, BCL11B, PAX6, EMX1, MCOLN2, TRPA1, TRPC4) were identified. CTD showed that 4 genes (CUX1, EMX1, TRPA1, BCL11B) were associated with colorectal neoplasms, colorectal tumors, colonic diseases, multiple myeloma, OS, and inflammation. PAX6, TRPA1, BCL11B, MCOLN2, CUX1, and EMX1 are highly expressed in colorectal cancer and OS, and the higher the expression level, the worse the prognosis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Qiang Gao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoqian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, P.R. China
| | - Qijun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Haifeng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Chang’an District, Shijiazhuang City, Hebei Province, P.R. China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| |
Collapse
|
2
|
Doghish AS, Hegazy M, Ismail A, El-Mahdy HA, Elsakka EGE, Elkhawaga SY, Elkady MA, Yehia AM, Abdelmaksoud NM, Mokhtar MM. A spotlight on the interplay of signaling pathways and the role of miRNAs in osteosarcoma pathogenesis and therapeutic resistance. Pathol Res Pract 2023; 245:154442. [PMID: 37031532 DOI: 10.1016/j.prp.2023.154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
3
|
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 2022; 148:547-564. [PMID: 35083552 DOI: 10.1007/s00432-021-03892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| | - Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| |
Collapse
|
4
|
Xie C, Liu S, Wu B, Zhao Y, Chen B, Guo J, Qiu S, Cao YM. miR-19 Promotes Cell Proliferation, Invasion, Migration, and EMT by Inhibiting SPRED2-mediated Autophagy in Osteosarcoma Cells. Cell Transplant 2021; 29:963689720962460. [PMID: 33023313 PMCID: PMC7784565 DOI: 10.1177/0963689720962460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma is an aggressive malignancy with rapid development and poor prognosis. microRNA-19 (miR-19) plays an important role in several biological processes. Sprouty-related EVH1 domain protein 2 (SPRED2) is a suppressor of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling to inhibit tumor development and progression by promoting autophagy. In this study, we investigated the roles of miR-19, SPRED2, and autophagy in osteosarcoma. We detected the expression of miR-19, SPRED2, epithelial-mesenchymal transition (EMT) markers, and autophagy-related proteins via quantitative real-time polymerase chain reaction or western blot. To evaluate the function of miR-19 and SPRED2, we used MTT and colony formation assays to detect cell proliferation, Transwell, and wound-healing assays to detect cell invasion and migration. Targetscan and luciferase reporter assays confirmed the relationship between SPRED2 and miR-19. The expression of miR-19 was significantly upregulated in osteosarcoma, while SPRED2 was downregulated. miR-19 inhibitor reduced cell proliferation, invasion, migration, and EMT, while its cell biological effects were partially reversed by addition of autophagy inhibitor 3-methyladenine (3-MA) or SPRED2 siRNA in osteosarcoma. SPRED2, a suppressor of ERK/MAPK pathway that is known to trigger autophagy, was identified as a direct target of miR-19. SPRED2 overexpression increased cell proliferation, invasion, migration, and EMT by promoting autophagy, and the effects could be inhibited by 3-MA. Collectively, these findings reveal an underlying mechanism for development of osteosarcoma. miR-19 was upregulated in osteosarcoma cells, and negatively regulated SPRED2, thus promoting the malignant transformation of osteosarcoma cells via inhibiting SPRED2-induced autophagy. Therefore, miR-19/SPRED2 may be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chuhai Xie
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengyao Liu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyi Wu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binwei Chen
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhong Guo
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - ShouHong Qiu
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Ming Cao
- Department of Orthopedics, 220741The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Luo T, Zhou X, Jiang E, Wang L, Ji Y, Shang Z. Osteosarcoma Cell-Derived Small Extracellular Vesicles Enhance Osteoclastogenesis and Bone Resorption Through Transferring MicroRNA-19a-3p. Front Oncol 2021; 11:618662. [PMID: 33842319 PMCID: PMC8029976 DOI: 10.3389/fonc.2021.618662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer characterized by an aggressive phenotype with bone destruction. The prognosis of OS patients remains unoptimistic with the current treatment strategy. Recently, osteoclasts are believed to play a crucial role in cancer bone metastasis. Thus, osteoclast could be a target both in bone destruction and cancer progression in OS. However, mechanisms governing osteoclastogenesis in OS remain poorly understood. miRNA delivered by small extracellular vesicles (sEVs) could mediate cellular communications. In this study, we investigated the effects of sEVs on osteoclastogenesis and osteoclast function, also clarified the underlying mechanism. We herein found that sEVs promoted pre-osteoclast migration, osteoclastogenesis and resorption by exposing RAW264.7 cells to sEVs derived from OS cells. Bioinformatics analysis showed that phosphatase tension homologue (PTEN), and miR-19a-3p were involved in OS progression. Overexpression of miR-19a-3p or sEVs’ miR-19a-3p promoted osteoclast formation and function through PTEN/PI3K/AKT signaling pathway, while inhibition of miR-19a-3p showed the contrary results. The bone marrow macrophages (BMMs) were used to verify the results. OS mice, which were established by subcutaneous injection of OS cells, exhibited increased levels of sEVs’ miR-19a-3p in blood. Moreover, micro-computed tomography (CT) and histomorphometry analysis demonstrated that OS mice exhibited osteopenia with increased number of osteoclasts. In conclusion, miR-19a-3p delivery via OS cell-derived sEVs promotes osteoclast differentiation and bone destruction through PTEN/phosphatidylinositol 3 -kinase (PI3K)/protein kinase B (AKT) signaling pathway. These findings highlight sEVs packaging of miR-19a-3p as a potential target for prevention and treatment of bone destruction and cancer progression in OS patients. And this finding provides a novel potentially therapeutic target for the bone metastasis.
Collapse
Affiliation(s)
- Tingting Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
7
|
Zhang S, Wang Q, Li D, Huang B, Hou X, Wang D. MicroRNA‑509 targets PAX6 to inhibit cell proliferation and invasion in papillary thyroid carcinoma. Mol Med Rep 2018; 19:1403-1409. [PMID: 30569166 DOI: 10.3892/mmr.2018.9750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 09/28/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) negatively regulate the expression of numerous genes and therefore contribute to the occurrence and development of papillary thyroid carcinoma (PTC). Hence, further investigation into the specific roles of miRNAs in PTC is valuable for developing effective therapeutic methods for patients with this disease. MiRNA‑509 is dysregulated and serves pivotal roles in several types of human cancer; however, the expression and roles of miR‑509 in PTC and its underlying mechanism require further investigation. In the present study, the expression of miR‑509 in PTC tissues and cell lines was detected and the specific functions of miR‑509 in the progression of PTC were investigated. Additionally, the molecular mechanisms underlying the action of miR‑509 in PTC were determined. The present study demonstrated that miR‑509 was significantly downregulated in PTC tissues and cell lines. MiR‑509 upregulation inhibited the PTC cell proliferation and invasion. Mechanistically, paired box 6 (PAX6) was identified as a novel target of miR‑509 in PTC cells. In clinical PTC samples, miR‑509 was significantly overexpressed and inversely correlated with PAX6 expression. PAX6 restoration effectively reversed the inhibitory effects of miR‑509 overexpression on PTC cell proliferation and invasion. These results demonstrated that miR‑509 may act as a tumor suppressor in PTC by directly targeting PAX6. Thus, miR‑509 may be a potential therapeutic target for the treatment of patients with PTC.
Collapse
Affiliation(s)
- Shuilong Zhang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiang Wang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Dewei Li
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Bo Huang
- Department of Gastrointestinal Pancreas, Hernia and Abdominal Wall Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xia Hou
- Department of Chest Radiotherapy, Tumor Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China
| | - Dongliang Wang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|