1
|
Kumar H, Bhardwaj K, Cruz-Martins N, Sharma R, Siddiqui SA, Dhanjal DS, Singh R, Chopra C, Dantas A, Verma R, Dosoky NS, Kumar D. Phyto-Enrichment of Yogurt to Control Hypercholesterolemia: A Functional Approach. Molecules 2022; 27:molecules27113479. [PMID: 35684416 PMCID: PMC9182380 DOI: 10.3390/molecules27113479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cholesterol is essential for normal human health, but elevations in its serum levels have led to the development of various complications, including hypercholesterolemia (HC). Cholesterol accumulation in blood circulation formsplaques on artery walls and worsens the individuals’ health. To overcome this complication, different pharmacological and non-pharmacological approaches are employed to reduce elevated blood cholesterol levels. Atorvastatin and rosuvastatin are the most commonly used drugs, but their prolonged use leads to several acute side effects. In recent decades, the potential benefit of ingesting yogurt on lipid profile has attracted the interest of researchers and medical professionals worldwide. This review aims to give an overview of the current knowledge about HC and the different therapeutic approaches. It also discusses the health benefits of yogurt consumption and highlights the overlooked phyto-enrichment option to enhance the yogurt’s quality. Finally, clinical studies using different phyto-enriched yogurts for HC management are also reviewed. Yogurt has a rich nutritional value, but its processing degrades the content of minerals, vitamins, and other vital constituents with beneficial health effects. The option of enriching yogurt with phytoconstituents has drawn a lot of attention. Different pre-clinical and clinical studies have provided new insights on their benefits on gut microbiota and human health. Thus, the yogurtphyto-enrichment with stanol and β-glucan have opened new paths in functional food industries and found healthy andeffective alternatives for HC all along with conventional treatment approaches.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (K.B.); (R.V.)
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra PRD, Portugal
- Correspondence: (N.C.-M.); (N.S.D.); (D.K.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
| | - Shahida Anusha Siddiqui
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany;
- Department of Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (R.S.); (C.C.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (R.S.); (C.C.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (R.S.); (C.C.)
| | - Adriana Dantas
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (K.B.); (R.V.)
| | - Noura S. Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Correspondence: (N.C.-M.); (N.S.D.); (D.K.)
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (H.K.); (R.S.); (A.D.)
- Correspondence: (N.C.-M.); (N.S.D.); (D.K.)
| |
Collapse
|
2
|
Lee ZV, Llanes EJ, Sukmawan R, Thongtang N, Ho HQT, Barter P. Prevalence of plasma lipid disorders with an emphasis on LDL cholesterol in selected countries in the Asia-Pacific region. Lipids Health Dis 2021; 20:33. [PMID: 33858442 PMCID: PMC8051043 DOI: 10.1186/s12944-021-01450-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of mortality and morbidity within the Asia-Pacific region, with the prevalence of CVD risk factors such as plasma lipid disorders increasing in many Asian countries. As members of the Cardiovascular RISk Prevention (CRISP) in Asia network, the authors have focused on plasma lipid disorders in the six countries within which they have clinical experience: Indonesia, Malaysia, Philippines, Thailand, Vietnam, and Australia. Based on country-specific national surveys, the prevalence of abnormal levels of total cholesterol, low- and high-density lipoprotein cholesterol (LDL-C and HDL-C, respectively), and triglycerides (TG) are reported. An important caveat is that countries have used different thresholds to define plasma lipid disorders, making direct comparisons difficult. The prevalence of abnormal lipid levels was as follows: high total cholesterol (30.2-47.7%, thresholds: 190-213 mg/dL); high LDL-C (33.2-47.5%; thresholds: 130-135 mg/dL); low/abnormal HDL-C (22.9-72.0%; thresholds: 39-50 mg/dL); and high/abnormal TG (13.9-38.7%; thresholds: 150-177 mg/dL). Similarities and differences between country-specific guidelines for the management of plasma lipid disorders are highlighted. Based on the authors' clinical experience, some of the possible reasons for suboptimal management of plasma lipid disorders in each country are described. Issues common to several countries include physician reluctance to prescribe high-dose and/or high-intensity statins and poor understanding of disease, treatments, and side effects among patients. Treatment costs and geographical constraints have also hampered disease management in Indonesia and the Philippines. Understanding the factors governing the prevalence of plasma lipid disorders helps enhance strategies to reduce the burden of CVD in the Asia-Pacific region.
Collapse
Affiliation(s)
- Zhen-Vin Lee
- University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Elmer Jasper Llanes
- Division of Cardiovascular Medicine, University of the Philippines, Manila, Philippines
| | - Renan Sukmawan
- Department of Cardiology & Vascular Medicine, Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Nuntakorn Thongtang
- Division of Endocrinology and Metabolism, Faculty of Medicine, Siriraj Hospital Mahidol University, Bangkok, Thailand
| | | | - Philip Barter
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | |
Collapse
|
3
|
Tirawanchai N, Supapornhemin S, Somkasetrin A, Suktitipat B, Ampawong S. Regulatory effect of Phikud Navakot extract on HMG-CoA reductase and LDL-R: potential and alternate agents for lowering blood cholesterol. Altern Ther Health Med 2018; 18:258. [PMID: 30249222 PMCID: PMC6154411 DOI: 10.1186/s12906-018-2327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022]
Abstract
Background For decades, various cardiovascular symptoms have been relieved by the use of Ya-Hom Navakot, which is a formulation comprising 54 herbal medicines. The Thailand Ministry of Public Health listed Ya-Hom Navakot’s nine active principle and nomenclative herbal ingredients and termed them ‘Phikud Navakot’ (PN). Several reports have confirmed that PN has cardiovascular benefits similar to Ya-Hom Navakot. However, whether PN facilitates lipid-lowering activity remains unclear. Methods The present study investigated an in vitro model for examining the gene expression levels of 3-hydroxyl-3-methylglutaryl-CoA reductase (HMGCR) and low-density lipoprotein receptor (LDL-R) in HepG2 cells using qRT-PCR. The ethanol and water extractions of Ya-Hom Navakot, PN and Ya-Hom Navakot without PN were compared. Results One mg/ml of both NYEF and NYWF were found to significantly lower cholesterol by either the up-regulation of LDL-R or down-regulation of HMGCR compared with negative controls and 1 mg/ml simvastatin (p < 0.05). PNEF also up-regulated LDL-R gene expression, even more than NYEF (p < 0.05). In addition, the ethanol and water extracts of PN significantly down-regulated HMGCR gene expression compared with those of Ya-Hom Navakot without PN (p < 0.05). Conclusion The use of Ya-Hom Navakot or PN may provide an alternative treatment to lower cholesterol through HMGCR gene inhibition and LDL-R gene enhancement.
Collapse
|
4
|
Serum cholesterol reduction efficacy of biscuits with added plant stanol ester. CHOLESTEROL 2015; 2015:353164. [PMID: 25861469 PMCID: PMC4377436 DOI: 10.1155/2015/353164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
Abstract
This study's aim was to test the low-density lipoprotein cholesterol- (LDL-c-) lowering efficacy of biscuits containing 2 g of plant stanols, which corresponded to 3.4 g of plant stanol esters. The biscuit is a new food format that can be consumed as a snack. In a double-blind, placebo-controlled parallel design study, 119 mildly to moderately hypercholesterolemic volunteers were randomized to plant stanol or control groups. Subjects were comparable in age, gender, lipid profiles, and body mass index. They consumed a control biscuit once a day for a two-week period, followed by a four-week intervention period that either had a plant stanol ester biscuit or a control. During the habitual diet, one biscuit per day was consumed at any time that subjects wished. Serum lipid profiles were measured at the first day of run-in, at baseline, and at the study's end. Compared to the control, the total cholesterol (TC), LDL-c, and the LDL-to-high-density lipoprotein (LDL/HDL) ratio had serum reductions of 4.9%, 6.1%, and 4.3%, respectively, and were observed after 4 weeks of biscuit consumption with added plant stanols (P < 0.05). A significantly higher reduction in LDL-c (8.9%) and LDL/HDL ratio (11.4%) was measured in those taking a plant stanol biscuit with a meal compared to those who consumed a plant stanol biscuit without other food. In conclusion, incorporating plant stanols into a biscuit is an attractive, convenient, and acceptable way to modestly lower elevated cholesterol concentrations. For optimal efficacy, biscuits should be consumed with a meal as part of a healthy diet.
Collapse
|
5
|
Aekplakorn W, Chongsuvivatwong V, Tatsanavivat P, Suriyawongpaisal P. Prevalence of Metabolic Syndrome Defined by the International Diabetes Federation and National Cholesterol Education Program Criteria Among Thai Adults. Asia Pac J Public Health 2011; 23:792-800. [DOI: 10.1177/1010539511424482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study determines the prevalence of metabolic syndrome (MetS) according to the International Diabetes Federation (IDF) and National Cholesterol Education Program III (NCEP) criteria in Thai adults. Data from a national representative sample, InterASIA study, including a total of 5305 Thai adults 35 years and older were analyzed. Overall, the age-standardized prevalence of MetS by IDF and NCEP criteria were 24.0% (men 16.4%, women 31.6%) and 32.6% (men 28.7%, women 36.4%), respectively. The difference in prevalence of MetS between genders was much greater for the IDF compared with the NCEP definition. The age-standardized prevalence rates distributed by geographic region were relatively uniform with a lowest prevalence in the northeast. Among all possible sets of components for MetS, the most common combinations were a set of low high-density lipoprotein cholesterol, high triglyceride, and hyperglycemia in men (3.9%) and a set of abdominal obesity, low high-density lipoprotein cholesterol, and high triglycerides in women (6.7%). MetS is common in Thai adults and NCEP definition captures more cases of MetS compared with the IDF definition. Implementation of programs to prevent obesity and metabolic factors along with future periodic survey to monitor the problem is crucial.
Collapse
|
6
|
Gakidou E, Mallinger L, Abbott-Klafter J, Guerrero R, Villalpando S, Ridaura RL, Aekplakorn W, Naghavi M, Lim S, Lozano R, Murray CJL. Management of diabetes and associated cardiovascular risk factors in seven countries: a comparison of data from national health examination surveys. Bull World Health Organ 2010; 89:172-83. [PMID: 21379413 DOI: 10.2471/blt.10.080820] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/20/2010] [Accepted: 11/02/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To examine the effectiveness of the health system response to the challenge of diabetes across different settings and explore the inequalities in diabetes care that are attributable to socioeconomic factors. METHODS We used nationally representative health examination surveys from Colombia, England, the Islamic Republic of Iran, Mexico, Scotland, Thailand and the United States of America to obtain data on diagnosis, treatment and control of hyperglycaemia, arterial hypertension and hypercholesterolaemia among individuals with diabetes. Using logistic regression, we explored the socioeconomic determinants of diagnosis and effective case management. FINDINGS A substantial proportion of individuals with diabetes remain undiagnosed and untreated, both in developed and developing countries. The figures range from 24% of the women in Scotland and the USA to 62% of the men in Thailand. The proportion of individuals with diabetes reaching treatment targets for blood glucose, arterial blood pressure and serum cholesterol was very low, ranging from 1% of male patients in Mexico to about 12% in the United States. Income and education were not found to be significantly related to the rates of diagnosis and treatment anywhere except in Thailand, but in the three countries with available data insurance status was a strong predictor of diagnosis and effective management, especially in the United States. CONCLUSION There are many missed opportunities to reduce the burden of diabetes through improved control of blood glucose levels and improved diagnosis and treatment of arterial hypertension and hypercholesterolaemia. While no large socioeconomic inequalities were noted in the management of individuals with diabetes, financial access to care was a strong predictor of diagnosis and management.
Collapse
Affiliation(s)
- Emmanuela Gakidou
- Institute for Health Metrics and Evaluation, Seattle, WA 98121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|