1
|
Dlamini SB, Mlambo V, Mnisi CM, Ateba CN. Virulence, multiple drug resistance, and biofilm-formation in Salmonella species isolated from layer, broiler, and dual-purpose indigenous chickens. PLoS One 2024; 19:e0310010. [PMID: 39466757 PMCID: PMC11515961 DOI: 10.1371/journal.pone.0310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, the significant risk to food safety and public health posed by antimicrobial-resistant foodborne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in usage across poultry production systems. The current study investigated the occurrence of virulence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates sourced from different chicken types. A total of 75 cloacal faecal samples were collected using sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per chicken type). The samples were analysed for the presence of Salmonella spp. using species-specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteritidis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and trimethoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE (16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE (10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and 14% of the isolates respectively. There was no significant difference on the proportion of Salmonella species and the occurrence of virulence and antimicrobial resistance determinants among Salmonella isolates obtained from different chicken types. In addition, neither the chicken type nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms, although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in the study but these did not vary with poultry production systems.
Collapse
Affiliation(s)
- Sicelo B. Dlamini
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| |
Collapse
|
2
|
Elsayed MM, El-Basrey YFH, El-Baz AH, Dowidar HA, Shami A, Al-Saeed FA, Alsamghan A, Salem HM, Alhazmi WA, El-Tarabily KA, Khedr MHE. Ecological prevalence, genetic diversity, and multidrug resistance of Salmonella enteritidis recovered from broiler and layer chicken farms. Poult Sci 2024; 103:103320. [PMID: 38215504 PMCID: PMC10825688 DOI: 10.1016/j.psj.2023.103320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024] Open
Abstract
Salmonella is a significant foodborne pathogen that has a significant impact on public health, and different strains of multidrug resistance (MDR) have been identified in this genus. This study used a combination of phenotypic and genotypic approaches to identify distinct Salmonella species collected from poultry broiler and layer farms, and antibiotic sensitivity testing was performed on these species. A total of 56 Salmonella isolates were serotyped, and phenotypic antibiotic resistance was determined for each strain. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) method was also used to provide a genotypic description, from which a dendrogram was constructed and the most likely phylogenetic relationships were applied. Salmonella isolates were detected in 20 (17%) out of 117 samples collected from small-scale broiler flocks. Salmonella isolates were classified as MDR strains after showing tolerance to 4 antibiotics, but no resistance to cloxacillin, streptomycin, vancomycin, or netilmicin was observed. From a genotypic perspective, these strains lack dfrD, parC, and blasfo-1 resistant genes, while harboring blactx-M, blaDHA-L, qnrA, qnrB, qnrS, gyrA, ermA, ermB, ermC, ermTR, mefA, msrA, tet A, tet B, tet L, tet M resistance genes. The genotyping results obtained with ERIC-PCR allowed isolates to be classified based on the source of recovery. It was determined that Salmonella strains displayed MDR, and many genes associated with them. Additionally, the ERIC-PCR procedure aided in the generation of clusters with biological significance. Extensive research on Salmonella serotypes is warranted, along with the implementation of long-term surveillance programs to monitor MDR Salmonella serotypes in avian-derived foods.
Collapse
Affiliation(s)
- Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yara F H El-Basrey
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amira Hussein El-Baz
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Heba A Dowidar
- Department of Medical Laboratory, Higher Institute of Technology for Applied Health Science, Badr Institute for Science and Technology, Cairo, Egypt
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Awad Alsamghan
- Family and Community Medicine Department, College of Medicine, King Khalid University, Abha 61413, Saudi Arabia
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa Ahmed Alhazmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Mariam H E Khedr
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
3
|
Nayak S, Aanice D, Andria D, Pai A, Maiti B. Polymerase chain reaction-based typing methods and protein profiling analysis of Acinetobacter baumannii isolated from environmental and clinical sources from South India. Can J Microbiol 2023; 69:449-462. [PMID: 37364377 DOI: 10.1139/cjm-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen known for causing hospital-acquired infections. The natural habitat includes soil, water, sewage, and drains, but it is also detected in infected individuals' blood, pus, and respiratory pathways. Due to its resilient nature, it is known to be a causative agent for outbreaks. Therefore, it is crucial to understand the genetic similarity between clinical and environmental isolates. The study aimed to find the genetic relationships between clinical and environmental isolates using PCR-based typing methods such as enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), random amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic sequence-based PCR (Rep-PCR). Additionally, outer membrane protein (OMP) and whole cell protein (WCP) profiles were also used. The PCR-based methods, ERIC-PCR and Rep-PCR, showed decreased genetic similarity between clinical and environmental isolates (66% and 58%, respectively). However, RAPD showed relatively higher genetic similarity (91%). The OMP and WCP profiles showed varied banding patterns between the clinical and environmental isolates in the 29-43 kDa region. The PCR-based methods proved to be a reliable and reproducible technique. The OMP and WCP profiles, though not as discriminatory as the molecular typing methods, could help identify the most and least commonly occurring protein bands and thus help in typing clinical and environmental A. baumannii isolates.
Collapse
Affiliation(s)
- Srajana Nayak
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - D'Almeida Aanice
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Dsouza Andria
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Archana Pai
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| |
Collapse
|
4
|
Rosli NA, Al-Maleki AR, Loke MF, Chua EG, Alhoot MA, Vadivelu J. Polymorphism of virulence genes and biofilm associated with in vitro induced resistance to clarithromycin in Helicobacter pylori. Gut Pathog 2023; 15:52. [PMID: 37898785 PMCID: PMC10613384 DOI: 10.1186/s13099-023-00579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Clarithromycin-containing triple therapy is commonly used to treat Helicobacter pylori infections. Clarithromycin resistance is the leading cause of H. pylori treatment failure. Understanding the specific mutations that occur in H. pylori strains that have evolved antibiotic resistance can help create a more effective and individualised antibiotic treatment plan. However, little is understood about the genetic reprogramming linked to clarithromycin exposure and the emergence of antibiotic resistance in H. pylori. Therefore, this study aims to identify compensatory mutations and biofilm formation associated with the development of clarithromycin resistance in H. pylori. Clarithromycin-sensitive H. pylori clinical isolates were induced to develop clarithromycin resistance through in vitro exposure to incrementally increasing concentration of the antibiotic. The genomes of the origin sensitive isolates (S), isogenic breakpoint (B), and resistant isolates (R) were sequenced. Single nucleotide variations (SNVs), and insertions or deletions (InDels) associated with the development of clarithromycin resistance were identified. Growth and biofilm production were also assessed. RESULTS The S isolates with A2143G mutation in the 23S rRNA gene were successfully induced to be resistant. According to the data, antibiotic exposure may alter the expression of certain genes, including those that code for the Cag4/Cag protein, the vacuolating cytotoxin domain-containing protein, the sel1 repeat family protein, and the rsmh gene, which may increase the risk of developing and enhances virulence in H. pylori. Enhanced biofilm formation was detected among R isolates compared to B and S isolates. Furthermore, high polymorphism was also detected among the genes associated with biofilm production. CONCLUSIONS Therefore, this study suggests that H. pylori may acquire virulence factors while also developing antibiotic resistance due to clarithromycin exposure.
Collapse
Affiliation(s)
- Naim Asyraf Rosli
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Mun Fai Loke
- Camtech Biomedical Pte Ltd, Singapore, Singapore
| | - Eng Guan Chua
- School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA, Australia
| | - Mohammed Abdelfatah Alhoot
- Faculty of Pharmacy, Airlangga University, Surabaya, 60155, Indonesia
- School of Graduate Studies, Management & Science University, Shah Alam, Selangor, Malaysia
| | - Jamuna Vadivelu
- Medical Education Research and Development Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Nazari Moghadam M, Rahimi E, Shakerian A, Momtaz H. Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: virulence and antimicrobial-resistant genes. BMC Microbiol 2023; 23:168. [PMID: 37322421 PMCID: PMC10268442 DOI: 10.1186/s12866-023-02908-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Salmonellosis, a zoonotic disease, is one of the leading causes of foodborne illness worldwide. It is responsible for most infections caused by consumption of contaminated food. In recent years, a significant increase in the resistance of these bacteria to common antibiotics has been observed, posing a serious threat to global public health. The aim of this study was to investigate the prevalence of virulent antibiotic-resistant Salmonella spp. strains in Iranian poultry markets. A total of 440 chicken meat samples were randomly selected from meat supply and distribution facilities in Shahrekord and tested for bacteriological contamination. After culturing and isolating the strains, identification was performed using the classical bacteriological method and PCR. To determine antibiotic resistance, a disc diffusion test was performed according to the recommendations of the French Society of Microbiology. PCR was used to detect resistance and virulence genes. Only 9% of the samples were positive for Salmonella. These were Salmonella typhimurium isolates. All Salmonella typhimurium serotypes tested positive for the rfbJ, fljB, invA and fliC genes. Resistance to TET, cotrimoxazole, NA, NIT, piperacillin/tazobactam and other antibiotics was found in 26 (72.2%), 24 (66.7%), 22 (61.1%) and 21 (58.3%) isolates, respectively. The sul1, sul2 and sul3 genes were present in 20, 12 and 4 of 24 cotrimoxazole-resistant bacteria, respectively. Chloramphenicol resistance was found in six isolates, but more isolates tested positive for the floR and cat two genes. In contrast, 2 (33%) of the cat three genes, 3 (50%) of the cmlA genes and 2 (34%) of the cmlB genes were all positive. The results of this investigation showed that Salmonella typhimurium is the most common serotype of the bacterium. This means that most of the antibiotics commonly used in the livestock and poultry industries are ineffective against most Salmonella isolates, which is important for public health.
Collapse
Affiliation(s)
- Marziye Nazari Moghadam
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Amir Shakerian
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hassan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
6
|
Karim MR, Zakaria Z, Hassan L, Mohd Faiz N, Ahmad NI. Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. Antibiotics (Basel) 2023; 12:1060. [PMID: 37370378 DOI: 10.3390/antibiotics12061060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes (blaTEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for blaTEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nik Mohd Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
7
|
Sattar Abd I, S. Mohammed A, Mohammed Flyyiah T. Whole-genome sequencing of Aminoglycoside nucleotidyltransferase aadA1 in patients with typhoid. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2022:5393-5396. [DOI: 10.52711/0974-360x.2022.00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
S. typhi is causes typhoid in Iraq and developing countries. The abuse of antibiotics make the patient infected with S. typhi wich is resistant to many antibiotics. Aims of the study: Molecular and phylogenetic tree of genomic resistance genes associated Aminoglycoside nucleotidyltransferase (aad-A1), and detection mutation occur in aadA1 gene. Disc diffusion method and VITEK2 compact system to detect the resistance of S.typhi to 11 antibiotics and using the PCR technique to detect the prevalence of aadA1 resistance gene. The genomic DNA extracted from all S. typhi isolated harboring resistance gene. The prevalence of the aadA1 gene was 12(24%) from all S. typhi isolates and the presence of a silent mutation in sample number 2 Iraqi isolate. The first isolate (MW805237.1) was almost just like the isolates of each of the countries Korea, Iran Iran, India, and Madagascar, but The second Iraqi isolate (MW805238.1) was the share of congruence between them at 99% at position G. The aadA1 gene was present in S. typhi isolated from blood, the stool of human, and the detected mutation has no effect.
Collapse
Affiliation(s)
- Inas Sattar Abd
- Department of Microbiology, College of Science, Al-Karkh University of Science, Baghdad, Iraq
| | - Ahmed S. Mohammed
- College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq
| | | |
Collapse
|
8
|
Igbinosa EO, Beshiru A, Igbinosa IH, Okoh AI. Antimicrobial resistance and genetic characterisation of Salmonella enterica from retail poultry meats in Benin City, Nigeria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Forgaciu A, Tabaran A, Colobatiu L, Mihaiu R, Dan SD, Mihaiu M. Concerning Increase in Antimicrobial Resistance Patterns of Pathogenic Strains of Salmonella Isolated in Poultry Meat Products. Antibiotics (Basel) 2022; 11:1469. [PMID: 36358123 PMCID: PMC9686628 DOI: 10.3390/antibiotics11111469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Salmonella is considered to be one of the major foodborne pathogens associated with the consumption of contaminated poultry meat products. To the best of our knowledge this is the first extended research performed on a number of Salmonella strains isolated during 2011-2021 from poultry meat products in Romania. The aim of this study was to characterize the prevalence of pathogenic Salmonella serovars, antimicrobial susceptibility, and antimicrobial resistance genes in 112 Salmonella isolates recovered from raw poultry meat products. The results showed that Salmonella enterica serovars Enteritidis and Typhimurium were the common serotypes (56%; 25%). Overall, the majority of the isolates were resistant to at least three tested antimicrobials. High resistance was observed for tetracycline (84%), nalidixic acid (78%), and ampicillin (78%) in pathogenic Salmonella isolated during the period 2016-2021. All the pathogenic Salmonella isolated during 2016-2021 tested positive to at least one resistance gene encoding for tetracycline resistance, with the tetA gene being the most prevalent (62%). In addition, 64% (24/37) of the Salmonella isolates carried at least one of the genes (blaCMY-2, blaSHV1, blaTEM1) that code for β-Lactams resistance. The findings in this study showed a high prevalence of multi-drug resistant (MDR) Salmonella serovars in poultry meat products and a concerning increase of resistance patterns. The continuous occurrence of more resistant strains implies that effective measures should be strictly applied in this particular food chain in order to prevent their spread and guarantee microbial safety.
Collapse
Affiliation(s)
- Anca Forgaciu
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| | - Alexandra Tabaran
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| | - Liora Colobatiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Department of Management, Faculty of Economic Sciences and Business Administration, Babes Bolyai University, Mihail Kogalniceanu Street No. 1, 400084 Cluj-Napoca, Romania
| | - Sorin Daniel Dan
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| | - Marian Mihaiu
- Department of Animal Breeding and Food Science, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Presence of Extended Spectrum Beta Lactamase, Virulence Genes and Resistance Determinants in Biofilm Forming Klebsiella pneumoniae Isolated from Food Sources: A Potent Risk to the Consumers. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foodborne diseases and infection caused by associated pathogens is a public health concern. Majority of the investigations focus on common foodborne pathogens like Vibrio parahaemolyticus, Escherichia coli, Listeria monocytogenes, Shigella, Salmonella and Staphylococcus aureus. Limited knowledge has been accounted on Klebsiella pneumoniae. Presence of multidrug-resistant K. pneumoniae in the food supply is disturbing. Hence, this study assessed the presence of K. pneumoniae isolates from food samples (fresh vegetables and chicken), ascertained the presence of drug-resistant phenotypes, extended spectrum beta lactamase production, antibiotic resistance determinants, genes associated with virulence and their ability to form biofilm. Resistance towards ceftazidime and tetracycline was noted among all the isolates in the study, while they exhibited sensitivity to chloramphenicol and co-trimoxazole. All the isolates were potent ESBL producers carrying at least one ESBL encoding genes. Plasmid mediated quinolone resistance gene was detected in one isolate each from onion and chicken respectively. The isolates marked the absence of tetracycline and chloramphenicol resistance genes. Multiple virulence genes (ureA, khe, fimH, mrkD, wabG, uge and elt) were possessed by each of the isolates. K. pneumoniae from chicken and cucumber were moderate biofilm formers and those from tomato exhibited weak biofilm formation. Increased expression of the mrkA gene and reduction in the expression of the biofilm forming gene fimH gene was observed among the biofilm formers. One of the moderate and non-biofilm formers exhibited increased mrkD gene expression. The results from our study stipulate, that raw vegetables and meat serve as dormant source of drug-resistant and virulent K. pneumoniae.
Collapse
|
11
|
Deekshit VK, Srikumar S. 'To be, or not to be' - the dilemma of 'silent' antimicrobial resistance genes in bacteria. J Appl Microbiol 2022; 133:2902-2914. [PMID: 35882476 DOI: 10.1111/jam.15738] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harboring silent antimicrobial resistance genes - genes whose presence is not associated with a corresponding resistant phenotype, do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance, and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance, and mechanism of silent antibiotic resistance genes in bacterial pathogens is very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance, and their importance in public health.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research, Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangaluru - 575018, Karnataka, India
| | - Shabarinath Srikumar
- Department of Food Science, College of Agriculture and Veterinary Medicine, UAE University, Al Ain, UAE
| |
Collapse
|
12
|
Stasiak M, Maćkiw E, Kowalska J, Kucharek K, Postupolski J. Silent Genes: Antimicrobial Resistance and Antibiotic Production. Pol J Microbiol 2022; 70:421-429. [PMID: 35003274 PMCID: PMC8702603 DOI: 10.33073/pjm-2021-040] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
Silent genes are DNA sequences that are generally not expressed or expressed at a very low level. These genes become active as a result of mutation, recombination, or insertion. Silent genes can also be activated in laboratory conditions using pleiotropic, targeted genome-wide, or biosynthetic gene cluster approaches. Like every other gene, silent genes can spread through horizontal gene transfer. Most studies have focused on strains with phenotypic resistance, which is the most common subject. However, to fully understand the mechanism behind the spreading of antibiotic resistance, it is reasonable to study the whole resistome, including silent genes.
Collapse
Affiliation(s)
- Monika Stasiak
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Elżbieta Maćkiw
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Joanna Kowalska
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Katarzyna Kucharek
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Jacek Postupolski
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| |
Collapse
|
13
|
Obe T, Nannapaneni R, Schilling W, Zhang L, Kiess A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
14
|
Aditya V, Kotian A, Saikrishnan S, Rohit A, Mithoor D, Karunasagar I, Deekshit VK. Effect of ciprofloxacin and in vitro gut conditions on biofilm of Escherichia coli isolated from clinical and environmental sources. J Appl Microbiol 2021; 132:964-977. [PMID: 34374176 DOI: 10.1111/jam.15249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
AIM This study aimed at characterizing the biofilm-forming ability of drug-resistant and sensitive Escherichia coli under in vitro gut conditions and in the presence of ciprofloxacin. METHODS AND RESULTS 153 E. coli isolates comprising 80 from clinical and 73 from environment source were studied for their ability to form biofilm under control and in vitro simulated gut conditions. The integrity of preformed biofilm on exposure to ciprofloxacin was assessed. Expression of biofilm-associated genes was analysed using qPCR. A high degree of resistance was observed in clinical isolates with a concomitant prevalence of blaTEM . Bile, pH and low temperature enabled the E. coli biofilm to resist the effect of ciprofloxacin. Clinical isolates of E. coli formed strong biofilms in in vitro gut conditions following exposure to high concentration of ciprofloxacin. The expression of biofilm genes varied between different gut conditions viz., presence of bile, pH and low temperature, included in this study. CONCLUSIONS This study demonstrates the importance of papC and csgA for maintaining the biofilm integrity upon antibiotic exposure. Escherichia coli form biofilm as a survival strategy to adapt to the conditions in their environment irrespective of their drug resistance status. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides an understanding of the effect of different parameters of the gut conditions during infection and the effect of antibiotic on survival and biofilm-forming ability of clinical and environmental E. coli isolates. It further suggests that bacteria resort to biofilm formation as one of the mechanisms to adjust to alterations in gut conditions and once the biofilm is formed, it requires high concentration of ciprofloxacin to eradicate it.
Collapse
Affiliation(s)
- Vankadari Aditya
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Mangaluru, India
| | - Akshatha Kotian
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Mangaluru, India
| | - Sreya Saikrishnan
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Mangaluru, India
| | - Anusha Rohit
- Department of Microbiology, Madras Medical Mission, Chennai, India
| | - Divyashree Mithoor
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Mangaluru, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Mangaluru, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Mangaluru, India
| |
Collapse
|
15
|
Abdou Mohamed MA, Kozlowski HN, Kim J, Zagorovsky K, Kantor M, Feld JJ, Mubareka S, Mazzulli T, Chan WCW. Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. ACS NANO 2021; 15:9379-9390. [PMID: 33970612 DOI: 10.1021/acsnano.0c09902] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.
Collapse
Affiliation(s)
- Mohamed A Abdou Mohamed
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hannah N Kozlowski
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Jisung Kim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Kyryl Zagorovsky
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melinda Kantor
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Samira Mubareka
- Divisions of Microbiology and Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering. University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
16
|
Sinwat N, Witoonsatian K, Chumsing S, Suwanwong M, Kankuntod S, Jirawattanapong P, Songserm T. Antimicrobial Resistance Phenotypes and Genotypes of Salmonella spp. Isolated from Commercial Duck Meat Production in Thailand and Their Minimal Inhibitory Concentration of Disinfectants. Microb Drug Resist 2021; 27:1733-1741. [PMID: 34077246 DOI: 10.1089/mdr.2020.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella is an important foodborne bacterium that has become increasingly resistant to critical antimicrobial and disinfectant agents. The aim of this study was to characterize antimicrobial and disinfectant resistance of Salmonella spp. isolated from ducks raised for meat in Nakhon Pathom province, Thailand. A total of 694 fecal samples from ducks were collected in 2018. Of which, 85 samples were positive for Salmonella (12.2%), and 12 Salmonella serovars were identified from 125 Salmonella isolates. The Altona serovar was the predominant serotype found in this study (36.5%). All isolates showed resistance to at least one class of antimicrobial, and 23.2% displayed multidrug resistance (MDR) phenotype. The blaTEM, aadA2, strA, and dfrA12 genes were detected in antibiotic-resistant strains of Salmonella, whereas the genes within a plasmid-borne qnr family that presented in fluoroquinolone-susceptible Salmonella strains were qnrB (3.8%) and qnrS (1.5%). The minimum inhibitory concentrations of benzalkonium chloride (BKC), cetylpyridium chloride (CPC), and hexadecyltrimethyl ammonium bromide (CTAB) ranged between 128 and 512 μg/mL, while that of didecyldimethylammonium chloride (DDAC) was between 32 and 128 μg/mL. The presences of qacEΔ1, mdfA, sugE(c), sugE(p), and ydgE genes were less prevalent (0.8-1.6%). Taken together, our results indicate that duck is an important source of Salmonella with antimicrobial resistance in food-producing animals. Active surveillance programs for antimicrobial and disinfectant resistance in duck production are needed for an early detection of resistance strains of public health importance.
Collapse
Affiliation(s)
- Nuananong Sinwat
- Department of Farm Resources and Production Medicine and Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Kriangkrai Witoonsatian
- Department of Farm Resources and Production Medicine and Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Suksan Chumsing
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Monticha Suwanwong
- Kamphaeng Saen Veterinary Diagnostic Center, and Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Somyod Kankuntod
- Kamphaeng Saen Veterinary Diagnostic Center, and Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Pichai Jirawattanapong
- Department of Farm Resources and Production Medicine and Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
17
|
Korzhikova-Vlakh E, Antipchik M, Tennikova T. Macroporous Polymer Monoliths in Thin Layer Format. Polymers (Basel) 2021; 13:1059. [PMID: 33801786 PMCID: PMC8037505 DOI: 10.3390/polym13071059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, macroporous polymer monoliths represent widely used stationary phases for a number of dynamic interphase mass exchange processes such as high-performance liquid chromatography, gas chromatography, electrochromatography, solid-phase extraction, and flow-through solid-state biocatalysis. This review represents the first summary in the field of current achievements on the preparation of macroporous polymer monolithic layers, as well as their application as solid phases for thin-layer chromatography and different kinds of microarray.
Collapse
Affiliation(s)
- Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Mariia Antipchik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Unversitetskiy pr. 26, Petergof, 198584 St. Petersburg, Russia;
| |
Collapse
|
18
|
M D, Vijaya Kumar D, Ballamoole KK, Shetty A V, Chakraborty A, Karunasagar I. Occurrence of antibiotic resistance among Gram negative bacteria isolated from effluents of fish processing plants in and around Mangalore. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:653-660. [PMID: 31112036 DOI: 10.1080/09603123.2019.1618799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The presence of antibiotic-resistant bacteria in seafood not only poses a serious health risk for the consumers but also contributes to the spread of these antibiotic-resistant bacteria in the natural environments through the effluents discharged from the fish processing plants. The aims of this study were to isolate Gram-negative bacteria from the effluents of fish processing plants in and around Mangalore, India and to profile their antibiotic resistance pattern. Maximum resistance was seen for ampicillin (40.78%) followed by tetracycline (40.22%) and nitrofurantoin (29.05%). Further, the detection of genes that contribute to antibiotic resistance revealed the presence of sulfonamide resistance genes (sul1 and sul2) and extended spectrum β-lactamase genes (bla CTX-M, bla TEM) in a few isolates. The presence of such bacteria in fish processing effluents is a matter of great concern because they can contribute significantly to the antibiotic resistance in the natural environment. It is imperative that seafood processing plants follow the safe disposal of effluents in order to reduce or eliminate the antibiotic resistance menace.
Collapse
Affiliation(s)
- Divyashree M
- UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University Center for Science Education and Research, Nitte (Deemed to be Universuty) , Mangaluru, Karnataka, India
| | - Deekshit Vijaya Kumar
- UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University Center for Science Education and Research, Nitte (Deemed to be Universuty) , Mangaluru, Karnataka, India
| | - Krishna Kumar Ballamoole
- UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University Center for Science Education and Research, Nitte (Deemed to be Universuty) , Mangaluru, Karnataka, India
| | - Veena Shetty A
- Department of Microbiology, K.S.Hegde Medical Academy, Nitte (Deemed to be University) , Mangaluru, Karnataka, India
| | - Anirban Chakraborty
- UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University Center for Science Education and Research, Nitte (Deemed to be Universuty) , Mangaluru, Karnataka, India
| | - Indrani Karunasagar
- UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University Center for Science Education and Research, Nitte (Deemed to be Universuty) , Mangaluru, Karnataka, India
| |
Collapse
|
19
|
Marbou WJT, Jain P, Samajpati S, Halder G, Mukhopadhyay AK, Dutta S, Kuete V. Profiling Virulence and Antimicrobial Resistance Markers of Enterovirulent Escherichia Coli from Fecal Isolates of Adult Patients with Enteric Infections in West Cameroon. Osong Public Health Res Perspect 2020; 11:216-230. [PMID: 32864313 PMCID: PMC7442445 DOI: 10.24171/j.phrp.2020.11.4.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objectives This study aimed to identify virulent and antimicrobial resistant genes in fecal E. coli in Mbouda, Cameroon. Methods A total of 599 fecal samples were collected from patients with enteric infections who were ≥ 20 years old. E. coli was isolated on the MacConkey agar and virulent genes were detected by multiplex/simplex PCR. Isolates in which ≥ 1 virulent gene was detected were subjected to antibiotic susceptibility testing. The resulting resistant isolates were subjected to PCR, followed by sequencing for resistant genes detection. Results There were 119 enterovirulent E. coli identified, amongst which 47.05% were atypical enteropathogenic E. coli (EPEC), 36.97% enterotoxigenic E. coli, 10.08% Shiga toxin producing E. coli (STEC) and 5.88% were enteroinvasive E. coli (EIEC). The occurrence of the eae gene (47.06%) was higher compared with CVD432 (33.61%), aaic (13.45%), stx2 (10.08%) and stx1 (0.84%). High resistance rates were noted for ampicillin (94.64% EPEC, 91.67% STEC, 59.09% EAEC, and 57.14% EIEC) and sulfamethoxazole-trimethoprim (100% EPEC and 83.33% STEC, 81.82% EAEC and 71.43% EIEC). sul2 (71.43%), tetB (64.71%), tetA (59.94%) and blaTEM (52.10%) were detected. A double mutation (S83L; D87N) was seen in gyrA and a single mutation (S80I) was observed in parC. Conclusion These findings suggested that measures should be taken to reduce the harm of E. coli to public health.
Collapse
Affiliation(s)
- Wiliane J T Marbou
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.,Bacteriology Division, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Priyanka Jain
- Bacteriology Division, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sriparna Samajpati
- Bacteriology Division, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Gourab Halder
- Bacteriology Division, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K Mukhopadhyay
- Bacteriology Division, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology Division, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
20
|
El-Sharkawy H, Tahoun A, Rizk AM, Suzuki T, Elmonir W, Nassef E, Shukry M, Germoush MO, Farrag F, Bin-Jumah M, Mahmoud AM. Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals (Basel) 2020; 10:ani10061023. [PMID: 32545606 PMCID: PMC7341506 DOI: 10.3390/ani10061023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Salmonella is an important foodborne pathogen that represents a very critical threat to poultry industry worldwide. This study concerns an important aspect of human food and health problem by treating a common zoonotic bacterial disease in poultry industry. Owing to the increased resistance to antibiotics among Salmonellaenterica serotypes, we aimed to explore the beneficial effects of different probiotics strains as alternative sources of protection against infection in broiler chickens. Three probiotic strains Lactobacillus (Lacticaseibacillus) casei ATTC334, Bifidobacterium breve JCM1192 and Bifidobacterium infantis BL2416) improved body weight gain and prevented the deleterious effects and mortality induced by Salmonella infection in chicks through different mechanisms, including competitive exclusion and the promotion of cytokines’ release. Abstract Chicken Salmonella enterica serovars are enteric bacteria associated with massive public health risks and economic losses. There is a widespread antimicrobial resistance among S.enterica serotypes, and innovative solutions to antibiotic resistance are needed. We aimed to use probiotics to reduce antibiotic resistance and identify the major probiotic players that modify the early interactions between S.enterica and host cells. One-day-old cobb broiler chicks were challenged with S. typhimurium after oral inoculation with different probiotic strains for 3 days. The adherence of different probiotic strains to Caco-2 intestinal epithelial cells was studied in vitro. Lactobacillus (Lacticaseibacillus) casei ATTC334 and Bifidobacterium breve JCM1192 strains attached to Caco-2 cells stronger than B. infantis BL2416. L. casei ATTC334 and B. breve JCM1192 reduced S. typhimurium recovery from the cecal tonsils by competitive exclusion mechanism. Although B. infantis BL2416 bound poorly to Caco-2 epithelial cells, it reduced S. typhimurium recovery and increased IFN-γ and TNF-α production. L. casei ATTC334, B. breve JCM1192 and B. infantis BL2416 improved body weight gain and the food conversion rate in S. typhimurium-infected broilers. B. longum Ncc2785 neither attached to epithelial cells nor induced IFN-γ and TNF-α release and consequently did not prevent S. typhimurium colonization in broiler chickens. In conclusion, probiotics prevented the intestinal colonization of S. typhimurium in infected chickens by competitive exclusion or cytokine production mechanisms.
Collapse
Affiliation(s)
- Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Correspondence: (A.T.); (A.M.M.)
| | - Amira M. Rizk
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University, Benha 13511, Egypt;
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Walid Elmonir
- Department of Hygiene and Preventive Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Ayman M. Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.T.); (A.M.M.)
| |
Collapse
|
21
|
Lin L, Zheng Q, Lin J, Yuk HG, Guo L. Immuno- and nucleic acid-based current technique for Salmonella detection in food. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03423-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Shivakumaraswamy SK, Deekshit VK, Vittal R, Akhila DS, Mundanda DM, Mohan Raj JR, Chakraborty A, Karunasagar I. Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. Indian J Med Res 2019; 149:232-239. [PMID: 31219088 PMCID: PMC6563738 DOI: 10.4103/ijmr.ijmr_2097_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. Methods Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. Results A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. Interpretation & conclusions This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources.
Collapse
Affiliation(s)
| | - Vijaya Kumar Deekshit
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Rajeshwari Vittal
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Dharnappa Sannejal Akhila
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Mangaluru, India
| | | | - Juliet Roshini Mohan Raj
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Anirban Chakraborty
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| |
Collapse
|
23
|
Wajid M, Saleemi MK, Sarwar Y, Ali A. Detection and characterization of multidrug-resistant Salmonella enterica serovar Infantis as an emerging threat in poultry farms of Faisalabad, Pakistan. J Appl Microbiol 2019; 127:248-261. [PMID: 30990250 DOI: 10.1111/jam.14282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was the molecular identification of Salmonella enterica serovar Infantis (S. Infantis) isolated from poultry samples and their antimicrobial resistance and virulence profiling. METHODS AND RESULTS A total of 149 isolates, belonging to genus Salmonella, originally isolated from 340 suspected poultry post mortem specimens reported by us earlier were preliminary identified as Salmonella by biochemical methods and confirmed by polymerase chain reaction targeting genus-specific gene invA. Targeting serovar-specific gene fragment (fljB) resulted in confirmation of 54 isolates as S. Infantis which were further confirmed by sequencing of 16S RNA and fljB genes. Swimming and swarming motilities were detected in 98·1 and 11·1% isolates respectively. Phenotypic disc diffusion assay against 23 antimicrobial agents showed the highest resistance against pefloxacin (PEF) (94·4%), chloramphenicol (83·3%) and imipenem (77·7%) while 5·3% isolates showed extended-spectrum β-lactamase production. Fifty-nine genes reported for antimicrobial resistance and 12 for conferring virulence were targeted. The most prevalent resistance gene for aminoglycosides was aadA (42·3%), for quinolone resistance determining region parE (62·5%), for penicillin's Int1 (62·9%), for chloramphenicol cat3 (66·1%) and for beta-lactams blaTEM -1 (44·4%). Among efflux pump coding genes, armA showed highest (74·2%) prevalence and for virulence, a high prevalence of SopE (89·2%) showed the zoonotic potential of the isolates. The activity of efflux pumps was detected through Ethidium Bromide-agar method. CONCLUSIONS Poultry could act as reservoirs of multidrug resistance Salmonella. SIGNIFICANCE AND IMPACT OF THE STUDY We firstly report the prevalence and molecular characterization of virulence/drug resistance in S. Infantis from this region and the results may contribute to designing precisely targeted therapy. This study has also highlighted the possible emergence of S. Infantis with zoonotic potential.
Collapse
Affiliation(s)
- M Wajid
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - M K Saleemi
- Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Y Sarwar
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - A Ali
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
24
|
Wajid M, Awan AB, Saleemi MK, Weinreich J, Schierack P, Sarwar Y, Ali A. Multiple Drug Resistance and Virulence Profiling ofSalmonella entericaSerovars Typhimurium and Enteritidis from Poultry Farms of Faisalabad, Pakistan. Microb Drug Resist 2019; 25:133-142. [DOI: 10.1089/mdr.2018.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Muhammad Wajid
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Asad Bashir Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jörg Weinreich
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Yasra Sarwar
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Aamir Ali
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
25
|
Bannister SA, Kidd SP, Kirby E, Shah S, Thomas A, Vipond R, Elmore MJ, Telfer Brunton A, Marsh P, Green S, Silman NJ, Kempsell KE. Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species. High Throughput 2018; 7:ht7040032. [PMID: 30332776 PMCID: PMC6306750 DOI: 10.3390/ht7040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 02/03/2023] Open
Abstract
Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.
Collapse
Affiliation(s)
| | - Stephen P Kidd
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Sonal Shah
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Anvy Thomas
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Richard Vipond
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Andrew Telfer Brunton
- Department of Clinical Microbiology, Royal Cornwall Hospitals NHS Trust, Penventinnie Lane, Treliske, Truro, Cornwall TR1 3LQ, UK.
| | - Peter Marsh
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Steve Green
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Nigel J Silman
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | |
Collapse
|
26
|
Olukemi Adesiji Y, Kogaluru Shivakumaraswamy S, Kumar Deekshit V, Shivani Kallappa G, Karunasagar I. Molecular characterization of antimicrobial multi-drug resistance in non-typhoidal Salmonellae from chicken and clam in Mangalore, India. J Biomed Res 2017; 32:237. [PMID: 28963445 PMCID: PMC6265399 DOI: 10.7555/jbr.31.20160094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/26/2017] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was aimed at studying the antimicrobial susceptibility pattern and detection of quinolone resistance in Salmonella spp isolated from food of animal origin. Thirty-six Salmonella isolates comprising 8 from poultry and 28 from seafood (clams) were identified, serotyped and characterized for their antimicrobial susceptibility against 10 different antibiotics. Plasmid DNA was isolated from all the isolates by alkaline lysis, quinolone resistant non-typhoidal S.Weltevreden were examined for mutation in the DNA gyrase coding gene. Among the 36 Salmonella isolates, 20 were S. weltevreden (8 from poultry and 12 from seafood) and 16 were S.Typhimurium (from seafood). All the isolates showed multiple resistance to nalidixic acid, tetracycline, co-trimoxazole and nitrofurantoin, but, interestingly, the isolates were 100% susceptible to ampicillin, chloramphenicol and gentamicin. Resistant isolates from the study carried the genes responsible for resistance to respective antibiotics. The strain S130 isolated in the study showed single point mutation, Asp87Gly, at position 87 in quinolone resistance determining region. It revealed mutation in quinolone resistance determining region as a cause for quinolone resistance in non-typhoidal Salmonellae. The occurrence of genes accountable for plasmid mediated resistance to quinolones (viz., qnrA, qnrB and qnrS) in plasmid of non-typhoidal Salmonellae isolates provides evidence for plasmid mediated quinolone resistance.
Collapse
Affiliation(s)
- Yemisi Olukemi Adesiji
- . Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology College of Health Sciences, Osogbo, Osun State 230222, Nigeria
| | - Santhosh Kogaluru Shivakumaraswamy
- . Nitte University Centre for Science Education and Research, UNESCO MIRCEN for Medical & Marine Biotechnology, NITTE University, Deralakatte, Mangalore 575018, India
| | - Vijaya Kumar Deekshit
- . Nitte University Centre for Science Education and Research, UNESCO MIRCEN for Medical & Marine Biotechnology, NITTE University, Deralakatte, Mangalore 575018, India
| | - Girisha Shivani Kallappa
- . Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries Mangalore, Karnataka 575002, India
| | - Indrani Karunasagar
- . Nitte University Centre for Science Education and Research, UNESCO MIRCEN for Medical & Marine Biotechnology, NITTE University, Deralakatte, Mangalore 575018, India
| |
Collapse
|
27
|
Abduljabba A, Reyadh Med A. Prevalence of Some Antimicrobials Resistance Associated-genes in Salmonella typhi Isolated from Patients Infected with Typhoid Fever. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jbs.2017.171.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Santhosh KS, Deekshit VK, Venugopal MN, Karunasagar I, Karunasagar I. Multiple Antimicrobial Resistance and Novel Point Mutation in Fluoroquinolone-Resistant Escherichia coli Isolates from Mangalore, India. Microb Drug Resist 2017; 23:994-1001. [PMID: 28445079 DOI: 10.1089/mdr.2016.0142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fluoroquinolone resistance in bacteria is usually associated with mutations in the topoisomerase regions. We report a novel point mutation in fluoroquinolone-resistant Escherichia coli strains. E. coli isolated from the environment in and around Mangalore, India, were examined for their antimicrobial resistance profile to 12 antibiotics and for the antibiotic resistance genes by polymerase chain reaction. Of the 67 E. coli isolated, 24 (35.8%) were sensitive to all antibiotics and 43 (64.2%) showed resistance to at least one of the 12 antibiotics used in the study. One isolate (EC10) was resistant to nine of the 12 antibiotics used. Resistance to nalidixic acid was the most common (34.32%), followed by nitrofurantoin (26.86%), tetracycline (22.38%), ampicillin (20.89%), cotrimoxazole (13.43%), ciprofloxacin (11.94%), gentamicin (10.44%), piperacillin/tazobactam (7.46%), chloramphenicol (7.46%), and cefotaxime (4.47%). Least resistance was observed for meropenem (1.49%) and none of the isolates showed resistance to imipenem. All the isolates harbored resistance genes corresponding to their antimicrobial resistance. Few quinolone-resistant isolates carried single point mutation (ser83Leu) and some had double point mutation (Ser83Leu and Asp87Asn) in gyrA. A third novel point mutation was also observed at position 50 with the change in the amino acid from tyrosine to cysteine (Tyr50Cys) in gyrA region. The study throws light on a novel point mutation in fluoroquinolone-resistant isolates. While the study helps to understand the risk and occurrence of antibiotic resistance among gram-negative bacteria from the environment, the alarming rate of antibiotic-resistant bacteria is a cause of concern in addressing infections.
Collapse
Affiliation(s)
- Kogaluru Shivakumaraswamy Santhosh
- 1 Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University , College of Fisheries, Mangalore, India
| | - Vijaya Kumar Deekshit
- 2 UNESCO MIRCEN for Marine Biotechnology, Nitte University Center for Science Education and Research, University Enclave , Medical Sciences Complex, Deralakatte, Mangalore, India
| | - Moleyuru Nagarajappa Venugopal
- 1 Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University , College of Fisheries, Mangalore, India
| | - Iddya Karunasagar
- 3 Senior International Food Safety Consultant , Subba-Meena, Jayanagar, Mangalore, India
| | - Indrani Karunasagar
- 2 UNESCO MIRCEN for Marine Biotechnology, Nitte University Center for Science Education and Research, University Enclave , Medical Sciences Complex, Deralakatte, Mangalore, India
| |
Collapse
|
29
|
El-Sharkawy H, Tahoun A, El-Gohary AEGA, El-Abasy M, El-Khayat F, Gillespie T, Kitade Y, Hafez HM, Neubauer H, El-Adawy H. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog 2017; 9:8. [PMID: 28203289 PMCID: PMC5301364 DOI: 10.1186/s13099-017-0157-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Salmonella is one of major causes of foodborne outbreaks globally. This study was conducted to estimate the prevalence, typing and antibiotic susceptibilities of Salmonella enterica serovars isolated from 41 broiler chicken farms located in Kafr El-Sheikh Province in Northern Egypt during 2014-2015. The clinical signs and mortalities were observed. RESULTS In total 615 clinical samples were collected from broiler flocks from different organs (liver, intestinal content and gall bladder). Salmonella infection was identified in 17 (41%) broiler chicken flocks and 67 Salmonella isolates were collected. Recovered isolates were serotyped as 58 (86.6%) S. enterica serovar Typhimurium, 6 (9%) S. enterica serovar Enteritidis and 3 (4.5%) were non-typable. The significant high mortality rate was observed only in 1-week-old chicks. sopE gene was detected in 92.5% of the isolates which indicating their ability to infect humans. All S. enterica serovar Enteritidis isolates were susceptible to all tested antimicrobials. The phenotypically resistant S. enterica serovar Typhimurium isolates against ampicillin, tetracycline, sulphamethoxazole and chloramphenicol were harbouring BlaTEM, (tetA and tetC), (sul1 and sul3) and (cat1 and floR), respectively. The sensitivity rate of S. enterica serovar Typhimurium to gentamycin, trimethoprim/sulphamethoxazole and streptomycin were 100, 94.8, 89.7%, respectively. The silent streptomycin antimicrobial cassettes were detected in all Salmonella serovars. A class one integron (dfrA12, orfF and aadA2) was identified in three of S. enterica serovar Typhimurium strains. CONCLUSIONS To the best of our knowledge, this study considered first report discussing the prevalence, genotyping, antibiotic susceptibility and public health significance of S. enterica serovars in broilers farms of different ages in Delta Egypt. Further studies are mandatory to verify the location of some resistance genes that are within or associated with the class one integron.
Collapse
Affiliation(s)
- Hanem El-Sharkawy
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Amin Tahoun
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | | | - Moshira El-Abasy
- Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Fares El-Khayat
- Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Trudi Gillespie
- CALM_live Imaging Facility, Centre for Inflammation Research, University of Edinburgh, Edinburgh, 47 EH16 4TJ UK
| | - Yukio Kitade
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany.,Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| |
Collapse
|
30
|
Su JQ, Cui L, Chen QL, An XL, Zhu YG. Application of genomic technologies to measure and monitor antibiotic resistance in animals. Ann N Y Acad Sci 2016; 1388:121-135. [DOI: 10.1111/nyas.13296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
31
|
Adesiji YO, Deekshit VK, Karunasagar I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci Nutr 2014; 2:436-42. [PMID: 25473501 PMCID: PMC4221842 DOI: 10.1002/fsn3.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/31/2014] [Accepted: 04/06/2014] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial-resistant salmonellosis is a significant public health concern globally. A study was conducted to screen for Salmonella species from a total of 120 samples, of which 50 were retail meat samples purchased from five randomly selected sales outlets in the city of Mangalore, India. Twenty poultry fecal materials freshly voided before slaughter were obtained with sterile spatula and placed in sterile sealable polythene envelopes, and 20 clams were purchased from the estuaries of Nethravathi and Kankarnady market. In addition, 30 clinical isolates from Nigeria suspected to be Salmonella by only cultural characterization were also included in the study. In all, 30 samples-6 poultry, 8 seafood, and 16 Salmonella isolates from clinical samples-were confirmed positive by PCR and used in this study. The disk-diffusion test was performed to determine the zone of inhibition, and detection of resistance genes was tested by PCR targeting various antimicrobial genes. Resistance to tetracycline (TET), cotrimoxazole, nalidixic acid, nitrofurantion, and piperacillin/tazobactin was found in 66.7%, 60%, 53.3%, 50% and 50% of the isolates, respectively. About 60-100% of MDR isolates possessed antibiotic-resistant genes, of the tetracyclines resistant isolates, 20 (100%) 6 (30%), 7 (35%), and 10 (50%) carried tetA, tetB, tetC, and tetG genes, respectively. Of 18 cotrimoxazole-resistant strains, 18 (100%), 14 (77.7%), and 4 (22.2%) had sul1, sul2, and sul3 genes, respectively. Of the 14 multidrug-resistant isolates tested, 8 (61%) and 9 (69%) were positive for cmlA and cmlB genes, respectively, 10 (1.4%) tested positive for aph(3)11a genes, 8 (57%) tested positive for aac(3)lla, while none was positive for the aac6 gene. The results show the presence of antibiotic-resistant Salmonella spp. in food samples from India and in human samples from Nigeria.
Collapse
Affiliation(s)
- Yemisi O Adesiji
- Department of Fisheries Microbiology, Karnataka Veterinary Animal and Fisheries Sciences University, College of Fisheries Mangalore, 575002, India
| | - Vijaya Kumar Deekshit
- Department of Fisheries Microbiology, Karnataka Veterinary Animal and Fisheries Sciences University, College of Fisheries Mangalore, 575002, India
| | - Indrani Karunasagar
- Department of Fisheries Microbiology, Karnataka Veterinary Animal and Fisheries Sciences University, College of Fisheries Mangalore, 575002, India
| |
Collapse
|
32
|
Bokaeian M, Saeidi S, Shahi Z, Kadaei V. tetA and tetB Genes in Klebsiella Pneumoniae Isolated From Clinical Samples. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/gct-18152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Park SH, Aydin M, Khatiwara A, Dolan MC, Gilmore DF, Bouldin JL, Ahn S, Ricke SC. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiol 2014; 38:250-62. [DOI: 10.1016/j.fm.2013.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/28/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022]
|
34
|
Resistance genes, phage types and pulsed field gel electrophoresis pulsotypes in Salmonella enterica strains from laying hen farms in southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3347-62. [PMID: 23924880 PMCID: PMC3774442 DOI: 10.3390/ijerph10083347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
Abstract
Twenty-four Salmonella enterica isolates (13 serovar Enteritidis and 11 Typhimurium) isolated from 5,600 samples from intensive laying hen farms in Italy in 1998-2007 were characterized for antimicrobial resistance genes, pulsotype and phage type. Most of S. Typhimurium strains were pulsotype STYMXB.0147 (81.8%), phage type DT143 and resistant to sulfamethoxazole encoded by sul2. Two multidrug resistant (MDR) strains were identified. One strain, STYMXB.0061, was resistant to ampicillin (A), chloramphenicol (C), streptomycin (S), sulfamethoxazole (Su) and tetracycline (T) encoded by the Salmonella Genomic Island SGI1. The second MDR strain, STYMXB.0110, was resistant to SSuT encoded by sul1 and sul2, aadA1 and tet(C)-flanked by an IS26 element, respectively. The tet(C) gene has been reported to confer low levels of resistance and it has very rarely been detected in S. Typhimurium from poultry. In the current study, the MIC value (32 µg/mL) was consistent with the breakpoint (≥16 µg/mL) reported for Enterobacteriaceae. Most of the S. Enteritidis strains were resistant to Su (encoded by sul2). One MDR strain (ANxSSuT) was identified. With the exception of nalidixic acid (Nx), the resistances were respectively encoded by bla(TEM), strAB, sul2 and tet(A) harbored by an IncN conjugative plasmid. All isolates were pulsotype SENTXB.0001 with PT14b being the most prevalent identified phage type (57.1%). In Europe, SENTXB.0001 is the predominant PFGE profile from clinical cases and the identification of PT14b has steadily been on the increase since 2001. The findings presented in this study highlight the potential spread of S. Enteritidis phage types PT14b and S. Typhimurium DT143 in a field of particular relevance for zoonoses. Additional, the presence of resistance genes and genetic elements (conjugative plasmid and IS element) underlines the need to assess routinely studies in field, such as poultry farms, relevant fot the public health and suitable for the storage and diffusion of antimicrobial resistance.
Collapse
|
35
|
Deekshit VK, Kumar BK, Rai P, Rohit A, Karunasagar I. Simultaneous detection of Salmonella pathogenicity island 2 and its antibiotic resistance genes from seafood. J Microbiol Methods 2013; 93:233-8. [PMID: 23545447 DOI: 10.1016/j.mimet.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 01/19/2023]
Abstract
Salmonella enterica serovars are virulent pathogens of humans and animals with many strains possessing multiple drug resistance traits. They have been found to carry resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT-resistant). A rapid and sensitive multiplex PCR (mPCR)-based assay was developed for the detection of Salmonella serovars from seafood. Six sets of primers which are one primer pair targeting Salmonella specific gene invA (284 bp), two Salmonella pathogenicity island 2 (SPI-2) genes ssaT (780 bp) and sseF (888 bp) and three antibiotic resistance genes floR (198 bp), sul1 (425 bp), tetG (550 bp) were used for the study. The specificity and sensitivity of the assay were tested by spiking shrimp/fish/clam homogenate with viable cells of Salmonella. This assay allows for the cost effective and reliable detection of pathogenic Salmonella enterica from seafood. The mPCR developed in the present study proved to be a potent analytical tool for the rapid identification of multidrug-resistant Salmonella serovars from seafood.
Collapse
Affiliation(s)
- Vijaya Kumar Deekshit
- Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575002, India
| | | | | | | | | |
Collapse
|
36
|
Phenotypic-genotypic resistance in Salmonella spp. isolated from cattle carcasses from the north central zone of the State of Mexico. Trop Anim Health Prod 2012; 45:995-1000. [PMID: 23224863 DOI: 10.1007/s11250-012-0323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
Salmonella is a public and animal health problem due to the generation of strains multiresistant to antimicrobial products. The objective of this study was to determine prevalence and antimicrobial phenotypic and genotypic resistance of Salmonella spp. isolated from beef cattle carcasses killed in slaughterhouses of the north central zone of the State of Mexico. Sampling was carried out according to the European Directive 2001/471/EC; isolation and identification of the strain was carried out according to the Mexican Official Standard NOM-114-SSA1-1994; resistance was established by CMI according to the National Committees for Clinical Laboratory Standards (NCLS) and multiplex PCR according to Ahmed et al. (Journal of Applied Microbiology 106:402-409, 2009) with PSE-1, tetG, qnrS, FloR, STR, and sul1 oligonucleotides. Twenty-seven strains of Salmonella spp. were obtained from 327 samples (prevalence of 0.083); 19 strains (70 %) were resistant to 10 μg/ml of ampicillin, 15 of these (79 %) had the PSE-1 gene; 22 strains (84 %) were resistant to 30 μg/ml streptomycin, 14 of these (63.6 %) had the STR gene. Genes PSE-1 and STR were factors in the presence of resistance, the rest of the genes (tetG, qnrS, FloR, and sul1) were not factors of resistance in the studied strains.
Collapse
|
37
|
Fu Y, Pan Y, Pan M, Wang Y, Liu W, Li Y. Development of a high-throughput DNA microarray for drug-resistant gene detection and its preliminary application. J Microbiol Methods 2012; 89:110-8. [PMID: 22619747 DOI: 10.1016/j.mimet.2012.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Most bacteria are resistant to a wide variety of antibiotics and other drugs, which decrease the effectiveness of clinical drug therapies. The present study developed a high-throughput DNA microarray for drug-resistant gene detection. A total of 115 specific oligonuclieotide probes with lengths of 42 nt to 45 nt and comparable Tm values were selected from 17 categories of drug-resistant genes in the National Center for Biotechnology Information database and were chemically synthesized. The entire bacterial DNA was extracted, randomly amplified, and labeled using Cy3-dCTP. The hybridization conditions of the microarray test were optimized to improve sensitivity and specificity. The drug-resistant genes were detected and genotyped using microarray analysis after hydration at 42°C for 4h with 2× hybridization solution. The microarray test sensitivity was 20ng/μL DNA. The performance of the microarray was validated using reference strains and clinical isolates. The results were consistent with direct DNA sequence analysis and drug susceptibility tests. The developed DNA microarray could be used to detect and screen drug-resistant bacteria rapidly and simultaneously. Thus, the present study could be helpful in effectively using antibiotics and controlling infectious diseases.
Collapse
Affiliation(s)
- Yali Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Deekshit V, Kumar B, Rai P, Srikumar S, Karunasagar I, Karunasagar I. Detection of class 1 integrons in Salmonella Weltevreden and silent antibiotic resistance genes in some seafood-associated nontyphoidal isolates of Salmonella in south-west coast of India. J Appl Microbiol 2012; 112:1113-22. [DOI: 10.1111/j.1365-2672.2012.05290.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Frye JG, Lindsey RL, Meinersmann RJ, Berrang ME, Jackson CR, Englen MD, Turpin JB, Fedorka-Cray PJ. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog Dis 2011; 8:663-79. [PMID: 21385089 DOI: 10.1089/fpd.2010.0695] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A potential factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes between bacteria in animals or their environment. To investigate this, swine fecal samples were collected on-farm and cultured for Escherichia coli, Salmonella enterica, Campylobacter spp., and Enterococcus spp. which are all commonly found in swine. Forty-nine of the samples from which all four bacteria were recovered were selected yielding a total of 196 isolates for analysis. Isolates were tested for antimicrobial susceptibility followed by hybridization to a DNA microarray designed to detect 775 AR-related genes. E. coli and Salmonella isolated from the same fecal sample had the most AR genes in common among the four bacteria. Genes detected encoded resistance to aminoglycosides (aac(3), aadA1, aadB, and strAB), β-lactams (ampC, ampR, and bla(TEM)), chloramphenicols (cat and floR), sulfanillic acid (sul1/sulI), tetracyclines (tet(A), tet(D), tet(C), tet(G), and tet(R)), and trimethoprim (dfrA1 and dfh). Campylobacter coli and Enterococcus isolated from the same sample frequently had tet(O) and aphA-3 genes detected in common. Almost half (47%) of E. coli and Salmonella isolated from the same fecal sample shared resistance genes at a significant level (χ², p < 0.0000001). These data suggest that there may have been horizontal exchange of AR genes between these bacteria or there may be a common source of AR genes in the swine environment for E. coli and Salmonella.
Collapse
Affiliation(s)
- Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Richard B. Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Frye JG, Lindsey RL, Rondeau G, Porwollik S, Long F, McClelland M, Jackson CR, Englen MD, Meinersmann RJ, Berrang ME, Davis JA, Barrett JB, Turpin JB, Thitaram SN, Fedorka-Cray PJ. Development of a DNA microarray to detect antimicrobial resistance genes identified in the National Center for Biotechnology Information database. Microb Drug Resist 2010; 16:9-19. [PMID: 19916789 DOI: 10.1089/mdr.2009.0082] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To understand the mechanisms and epidemiology of antimicrobial resistance (AR), the genetic elements responsible must be identified. Due to the myriad of possible genes, a high-density genotyping technique is needed for initial screening. To achieve this, AR genes in the National Center for Biotechnology Information GenBank database were identified by their annotations and compiled into a nonredundant list of 775 genes. A DNA microarray was constructed of 70mer oligonucelotide probes designed to detect these genes encoding resistances to aminoglycosides, beta-lactams, chloramphenicols, glycopeptides, heavy metals, lincosamides, macrolides, metronidazoles, polyketides, quaternary ammonium compounds, streptogramins, sulfonamides, tetracyclines, and trimethoprims as well as resistance transfer genes. The microarray was validated with two fully sequenced control strains of Salmonella enterica: Typhimurium LT2 (sensitive) and Typhi CT18 (multidrug resistance [MDR]). All resistance genes encoded on the MDR plasmid, pHCM1, harbored by CT18 were detected in that strain, whereas no resistance genes were detected in LT2. The microarray was also tested with a variety of bacteria, including MDR Salmonella enterica serovars, Escherichia coli, Campylobacter spp., Enterococcus spp., methicillin-resistant Staphylococcus aureus, Listeria spp., and Clostridium difficile. The results presented here demonstrate that a microarray can be designed to detect virtually all AR genes found in the National Center for Biotechnology Information database, thus reducing the subsequent assays necessary to identify specific resistance gene alleles.
Collapse
Affiliation(s)
- Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Richard B. Russell Research Center, Agriculture Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Davis MA, Lim JY, Soyer Y, Harbottle H, Chang YF, New D, Orfe LH, Besser TE, Call DR. Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica. J Microbiol Methods 2010; 82:36-41. [PMID: 20362014 DOI: 10.1016/j.mimet.2010.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022]
Abstract
A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing inter-laboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve=0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories.
Collapse
Affiliation(s)
- Margaret A Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brigulla M, Wackernagel W. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 2010; 86:1027-41. [DOI: 10.1007/s00253-010-2489-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/18/2009] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
|
43
|
Scaria J, Sreedharan A, Chang YF. Microbial Diagnostic Array Workstation (MDAW): a web server for diagnostic array data storage, sharing and analysis. SOURCE CODE FOR BIOLOGY AND MEDICINE 2008; 3:14. [PMID: 18811969 PMCID: PMC2563012 DOI: 10.1186/1751-0473-3-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/23/2008] [Indexed: 12/05/2022]
Abstract
Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.
Collapse
Affiliation(s)
- Joy Scaria
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Aswathy Sreedharan
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|