1
|
Tian Z, Wu H, Xu R, Yao L, Li W, He Q. Development of a Duplex-ddPCR assay for accurate quantification of pseudorabies virus through systematic optimization of amplification bias. Virology 2025; 602:110311. [PMID: 39631152 DOI: 10.1016/j.virol.2024.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Pseudorabies (PR), caused by the pseudorabies virus (PRV), is highly contagious. Although qPCR is widely used for viral DNA detection, it struggles with low-level DNA identification and precise quantification. To address these issues, droplet digital PCR (ddPCR) has emerged as a more advanced method for detecting pathogens and providing absolute quantification of nucleic acids. The study introduces a ddPCR assay for accurate PRV quantification, addressing the challenges posed by the high GC content of the PRV genome. By optimizing factors such as primer and probe concentrations, annealing conditions, denaturation time, and cycle number, the assay overcomes limitations of traditional PCR techniques. The optimized ddPCR assay showed a wide linear dynamic range, with well-defined limits of blank (LOB) and detection (LOD). Testing confirmed the method's reproducibility, demonstrating its stability and reliability. This study provides key insights into optimizing ddPCR for GC-rich templates and serves as a useful reference for future experiments.
Collapse
Affiliation(s)
- Zihan Tian
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Wu
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, 550005, Guiyang, Guizhou, China
| | - Rong Xu
- The Animal Disease Diagnostic Center, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lun Yao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, 430070, Wuhan, China; The Animal Disease Diagnostic Center, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, 430070, Wuhan, China; The Animal Disease Diagnostic Center, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
2
|
Shi K, Hu X, Yin Y, Shi Y, Pan Y, Long F, Feng S, Li Z. Development of a triplex crystal digital RT-PCR for the detection of PHEV, PRV, and CSFV. Front Vet Sci 2024; 11:1462880. [PMID: 39726583 PMCID: PMC11669669 DOI: 10.3389/fvets.2024.1462880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV. The results indicated that this assay had high sensitivity, and the limitation of detection (LODs) for PHEV, PRV, and CSFV were 4.812, 4.047, and 5.243 copies/reaction, respectively, which was about 50 times higher than that of multiplex real-time quantitative RT-PCR (RT-qPCR). This assay showed good specificity, without cross-reaction with other important swine pathogens, i.e., FMDV, PRRSV, PEDV, SIV, TGEV, PoRV, and PCV2. This assay had high repeatability, with intra-assay coefficients of variation (CVs) of 0.73-1.87%, and inter-assay CVs of 0.57-2.95%. The developed assay was used to test 1,367 clinical tissue samples from Guangxi province in China, and the positive rates of PHEV, PRV, and CSFV were 3.44% (47/1,367), 1.24% (17/1,367), and 1.90% (26/1,367), respectively, with a coincidence rate of 98.98% and a Kappa value of 0.94 to the reference multiplex RT-qPCR. The established triplex cdRT-PCR was a highly rapid, sensitive, and accurate assay to detect and differentiate PHEV, PRV, and CSFV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Bude SA, Lu Z, Zhao Z, Zhang Q. Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development. Vaccines (Basel) 2024; 12:1078. [PMID: 39340108 PMCID: PMC11435482 DOI: 10.3390/vaccines12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Pseudorabies virus (PRV) is a highly infectious pathogen that affects a wide range of mammals and imposes a significant economic burden on the global pig industry. The viral envelope of PRV contains several glycoproteins, including glycoprotein E (gE) and glycoprotein B (gB), which play critical roles in immune recognition, vaccine development, and diagnostic procedures. Mutations in these glycoproteins may enhance virulence, highlighting the need for updated vaccines. Method: This review examines the functions of PRV gE and gB in vaccine development and diagnostics, focusing on their roles in viral replication, immune system interaction, and pathogenicity. Additionally, we explore recent findings on the importance of gE deletion in attenuated vaccines and the potential of gB to induce immunity. Results: Glycoprotein E (gE) is crucial for the virus's axonal transport and nerve invasion, facilitating transmission to the central nervous system. Deletion of gE is a successful strategy in vaccine development, enhancing the immune response. Glycoprotein B (gB) plays a central role in viral replication and membrane fusion, aiding viral spread. Mutations in these glycoproteins may increase PRV virulence, complicating vaccine efficacy. Conclusion: With PRV glycoproteins being essential to both vaccine development and diagnostic approaches, future research should focus on enhancing these components to address emerging PRV variants. Updated vaccines and diagnostic tools are critical for combating new, more virulent strains of PRV.
Collapse
Affiliation(s)
- Sara Amanuel Bude
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| |
Collapse
|
4
|
Wang H, Li H, Tang B, Ye C, Han M, Teng L, Yue M, Li Y. Fast and sensitive differential diagnosis of pseudorabies virus-infected versus pseudorabies virus-vaccinated swine using CRISPR-Cas12a. Microbiol Spectr 2024; 12:e0261723. [PMID: 38078715 PMCID: PMC10783010 DOI: 10.1128/spectrum.02617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Pseudorabies virus (PRV) causes high mortality and miscarriage rates in the infected swine, and the eradication policy coupled with large-scale vaccination of live attenuated vaccines has been adopted globally against PRV. Differential diagnosis of the vaccinated and infected swine is highly demanded. Our multienzyme isothermal rapid amplification (MIRA)-Cas12a detection method described in this study can diagnose PRV with a superior sensitivity comparable to the quantitative PCR (qPCR) and a competitive detection speed (only half the time as qPCR needs). The portable feature and the simple procedure of MIRA-Cas12a make it easier to deploy for clinical diagnosis, even in resource-limited settings. The MIRA-Cas12a method would provide immediate and accurate diagnostic information for policymakers to respond promptly.
Collapse
Affiliation(s)
- Hao Wang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Hongzhao Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chen Ye
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Meiqing Han
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Lin Teng
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Goto Y, Fukunari K, Tada S, Ichimura S, Chiba Y, Suzuki T. A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. J Appl Microbiol 2023; 134:lxad263. [PMID: 37951290 DOI: 10.1093/jambio/lxad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIMS Swine respiratory disease (SRD) is a major disease complex in pigs that causes severe economic losses. SRD is associated with several intrinsic and extrinsic factors such as host health status, viruses, bacteria, and environmental factors. Particularly, it is known that many pathogens are associated with SRD to date, but most of the test to detect those pathogens can be normally investigated only one pathogen while taking time and labor. Therefore, it is desirable to develop rapidly and efficiently detectable methods those pathogens to minimize the damage caused by SRD. METHODS AND RESULTS We designed a multiplex real-time RT-PCR (RT-qPCR) system to diagnose simultaneously 16 pathogens, including nine viruses and seven bacteria associated with SRD, on the basis of single qPCR and RT-qPCR assays reported in previous studies. Multiplex RT-qPCR system we designed had the same ability to single RT-qPCR without significant differences in detection sensitivity for all target pathogens at minimum to maximum genomic levels. Moreover, the primers and probes used in this system had highly specificity because the sets had not been detected pathogens other than the target and its taxonomically related pathogens. Furthermore, our data demonstrated that this system would be useful to detect a causative pathogen in the diagnosis using oral fluid from healthy pigs and lung tissue from pigs with respiratory disorders collected in the field. CONCLUSIONS The rapid detection of infected animals from the herd using our system will contribute to infection control and prompt treatment in the field.
Collapse
Affiliation(s)
- Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Kazuhiro Fukunari
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Shigekatsu Tada
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Satoki Ichimura
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Yuzumi Chiba
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
6
|
Meng Y, Jiang N, Xie Y, Wei Y, Wang C, Tian M, Xue M, Xu C, Li Y, Liu W, Fan Y, Zhou Y. Development of a droplet digital PCR assay for the sensitive detection of iridovirus in Andrias davidianus. JOURNAL OF FISH DISEASES 2023; 46:1249-1256. [PMID: 37535813 DOI: 10.1111/jfd.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Chinese giant salamander iridovirus (GSIV) is the first known and causative viral pathogen in Andrias davidianus. Developing a sensitive, accurate and specific assay to detect GSIV in samples is essential to prevent the further spread of the pathogen. In this study, we established a droplet digital PCR (ddPCR) assay that targeted the mcp gene of GSIV, enabling rapid and quantitative detection of the virus. We determined that the optimal annealing temperature, primer concentration and probe concentration were 57.1°C, 50 nM and 500 nM, respectively. We analysed the specificity and sensitivity of the ddPCR assay and found that five common aquatic animal viruses, including Cyprinid herpesvirus 2 (CyHV-2), infectious spleen and kidney necrosis virus (ISKNV), Koi herpesvirus (KHV) and Carp Edema Virus (CEV) displayed negative results based on this GSIV ddPCR assay. The assay can detect GSIV with the lowest detection limit of 3.7 copies per reaction. To evaluate the sensitivity and accuracy of the ddPCR assay, we tested different infected tissue samples with both the ddPCR and TaqMan real-time PCR assays. Our results showed that the ddPCR assay detected GSIV in all samples with 100% positivity, while the TaqMan real-time PCR assay detected GSIV in only 82.1% of samples. The established ddPCR method provided several advantages in detecting GISV, including high sensitivity, high precision and absolute quantification, making it a powerful tool for detection of possible and potential GSIV infection, even in samples with low viral load.
Collapse
Affiliation(s)
- Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yixing Xie
- Zhangjiajie Giant salamander National Nature Reserve Affairs Center, Zhangjiajie, China
| | - Ying Wei
- Zhangjiajie Giant salamander National Nature Reserve Affairs Center, Zhangjiajie, China
| | - Cheng Wang
- Zhangjiajie Giant salamander National Nature Reserve Affairs Center, Zhangjiajie, China
| | - Mingzhu Tian
- Zhangjiajie Giant salamander National Nature Reserve Affairs Center, Zhangjiajie, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
7
|
Wu X, Chen R, Chen Q, Che Y, Yan S, Zhou L, Wang L. Establishment of an indirect ELISA method for antibody detection of porcine pseudorabies by recombinant gB, gC, and gD proteins. J Med Virol 2023; 95:e28228. [PMID: 36251622 DOI: 10.1002/jmv.28228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Pseudorabies virus (PRV), as a neuroherpes virus, leads to heavy economic losses in the pig industry worldwide. This study was designed to establish recombinant PRV glycoprotein B (gB), C, and D proteins as PRV diagnostic antigens. The gB/C, gC/D, and gB/C/D fusion sequences were synthesized and inserted into pET-28a+ vector to generate the recombinant plasmids. The identified positive recombinant plasmids were transformed into BL21 Escherichia coli. The results of the polymerase chain reaction and enzyme digestion showed that the gB/C, gC/D, and gB/C/D fusion proteins were successfully expressed. An indirect sandwich ELISA was developed with the gB/C, gC/D, and gB/C/D as coating antigens. The results of indirect enzyme-linked immunosorbent assay (ELISA) analysis of 184 PRV-positive porcine sera showed that the positive coincidence rates of three recombinant proteins ELISAs relative to IDEXX kit were 98.25%, 95.32%, and 98.83%, and the negative coincidence rates were 85.71%, 75% and 100%, respectively. The inter and intra batch repeatability tests showed that the coefficient of variations of our kits were all less than 5%. Especially, the gB/C/D-ELISA has the highest specificity and sensitivity among the ELISA methods developed in this study. We established a series expression system of gB/C, gC/D, and gB/C/D antigen epitope genes and Recombinant protein-based indirect ELISA, providing new ideas for PV diagnosis and vaccine development.
Collapse
Affiliation(s)
- Xuemin Wu
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| | - Rujing Chen
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| | - Qiuyong Chen
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| | - Yongliang Che
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| | - Shan Yan
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| | - Lunjiang Zhou
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| | - Longbai Wang
- Fujian Academy of Agriculture Sciences/Fujian Animal Disease Control Technology Development Center, Institute of Animal Husbandry and Veterinary Medicine, Fuzhou, China
| |
Collapse
|
8
|
Development and application of a recombinase-aided amplification and lateral flow assay for rapid detection of pseudorabies virus from clinical crude samples. Int J Biol Macromol 2022; 224:646-652. [DOI: 10.1016/j.ijbiomac.2022.10.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
9
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
10
|
Liu Y, Cai Y, Li G, Wang W, Wong PK, An T. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. WATER RESEARCH 2022; 218:118407. [PMID: 35453030 DOI: 10.1016/j.watres.2022.118407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO2 system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Lothert K, Eilts F, Wolff MW. Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes. Expert Rev Vaccines 2022; 21:1029-1044. [PMID: 35483057 DOI: 10.1080/14760584.2022.2072302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Effective cell-based production processes of virus particles are the foundation for the global availability of classical vaccines, gene therapeutic vectors, and viral oncolytic treatments. Their production is subject to regulatory standards ensuring the safety and efficacy of the pharmaceutical product. Process analytics must be fast and reliable to provide an efficient process development and a robust process control during production. Additionally, for the product release, the drug compound and the contaminants must be quantified by assays specified by regulatory authorities. AREAS COVERED This review summarizes analytical methods suitable for the quantification of viruses or virus-like particles. The different techniques are grouped by the analytical question that may be addressed. Accordingly, methods focus on the infectivity of the drug component on the one hand, and on particle counting and the quantification of viral elements on the other hand. The different techniques are compared regarding their advantages, drawbacks, required assay time, and sample throughput. EXPERT OPINION Among the technologies summarized, a tendency toward fast methods, allowing a high throughput and a wide applicability, can be foreseen. Driving forces for this progress are miniaturization and automation, and the continuous enhancement of process-relevant databases for a successful future process control.
Collapse
Affiliation(s)
- Keven Lothert
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Friederike Eilts
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Michael W Wolff
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany.,Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
12
|
Yu Z, Zhao Z, Chen L, Yan H, Cui Q, Ju X, Yong Y, Liu X, Ma X, Zhang G. Development of a droplet digital PCR assay to detect bovine alphaherpesvirus 1 in bovine semen. BMC Vet Res 2022; 18:125. [PMID: 35366879 PMCID: PMC8976375 DOI: 10.1186/s12917-022-03235-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Infectious bovine rhinotracheitis (IBR) caused by bovine alphaherpesvirus 1 (BoHV-1) is one of the most important contagious diseases in bovine. This is one of the most common infectious disease of cattle. This has led to high economic losses in the cattle farming industry. BoHV-1 can potentially be transmitted via semen during natural or artificial insemination (AI). Therefore, testing methods for the early diagnosis of BoHV-1 infection are urgently needed for international trade of ruminant semen. In this study, we developed a novel droplet digital PCR (ddPCR) assay for the detection of BoHV-1 DNA in semen samples.
Results
The ddPCR results showed that the detection limit was 4.45 copies per reaction with high reproducibility. The established method was highly specific for BoHV-1 and did not show cross-reactivity with specify the organisms (BTV, BVDV, Brucella, M . bovis). The results of clinical sample testing showed that the positivity rate of ddPCR (87.8%) was higher than that of qPCR (84.1%).
Conclusions
The ddPCR assay showed good accuracy for mixed samples and could be a new added diagnostic tool for detecting BoHV-1.
Collapse
|
13
|
Tu F, Zhang Y, Xu S, Yang X, Zhou L, Ge X, Han J, Guo X, Yang H. Detection of pseudorabies virus with a real-time recombinase-aided amplification assay. Transbound Emerg Dis 2021; 69:2266-2274. [PMID: 34273259 DOI: 10.1111/tbed.14241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Pseudorabies (PR) is an acute infectious disease of pigs caused by pseudorabies virus (PRV), which has caused great economic losses to the pig industry worldwide. Reliable and timely diagnose is crucial for the surveillance, control and eradication of PR. Here, a real-time fluorescent recombinase-aided amplification (real-time RAA) assay was established to detect PRV. Primers and probes were designed based on the conserved regions of the PRV gE gene. The assay was specific for the detection of wild-type PRV, showing no cross-reactivity with other important porcine viruses (including PRV gE-deleted vaccine strains). Analytical sensitivity of the assay was three 50% tissue culture infectious doses (TCID50 ) of PRV DNA per reaction with 95% reliability, which is comparable to that of a PRV-specific real-time PCR (qPCR) assay. In diagnosis of 206 clinical tissue samples, the diagnose accordance rate between the real-time RAA assay and qPCR assay was 97.57% (201/206). Interestingly, the amplified products of real-time RAA could be visualized under a portable blue light instrument, making it possible for the rapid detection of PRV in resource-limited settings and on-site screening. Therefore, our developed real-time RAA assay is a diagnostic method for the rapid detection of PRV in the field.
Collapse
Affiliation(s)
- Fei Tu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Xintan Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
14
|
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 2021; 36:588-607. [PMID: 33616892 PMCID: PMC7897889 DOI: 10.1007/s12250-020-00340-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease, is a highly infectious disease caused by pseudorabies virus (PRV). Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry. Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection. Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yadi Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Wei Luo
- Department of Animal Science and Technology, Huaihua Vocational and Technical College, Huaihua, 418000, China
| | - Xiaomin Yuan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
- PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
15
|
Yu Z, Zhao Z, Chen L, Li J, Ju X. Development of a Droplet Digital PCR for Detection of Trichuriasis in Sheep. J Parasitol 2021; 106:603-610. [PMID: 32997756 DOI: 10.1645/20-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Trichuriasis is a serious threat to the economic development of animal husbandry. This research aimed to establish a droplet digital PCR (ddPCR) method to detect Trichuris spp. for the early diagnosis and prevention of trichuriasis in sheep. The real-time quantitative PCR (qPCR) and ddPCR methods were used for the detection of nematodes by targeted amplification of the ITS gene. Each means was evaluated to optimize the limit of detection and reproducibility. For a recombinant plasmid, the qPCR results showed that the detection limit was 31.7 copies per reaction. In contrast to qPCR, ddPCR was able to detect concentrations below 3.17 copies per reaction. Both assays exhibited good reproducibility. However, the ddPCR method was more stable for low-copy-number detection. This new assay was specific for Trichuris spp. and did not cross-react with other relevant gastrointestinal nematodes. A total of 98 clinical samples were tested with both assays. The results showed that the positive rate of ddPCR (80.6%) was higher than that of qPCR (72.4%). This method could be used as an efficient molecular biology tool to test for Trichuris spp. and could be a new valuable tool for the clinical diagnosis and prevention of trichuriasis.
Collapse
Affiliation(s)
- Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.,Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Zhiguo Zhao
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Linjun Chen
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Junyan Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| |
Collapse
|
16
|
Chaudhary V, Wisely SM, Hernández FA, Hines JE, Nichols JD, Oli MK. A multi‐state occupancy modelling framework for robust estimation of disease prevalence in multi‐tissue disease systems. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vratika Chaudhary
- Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
- School of Natural Resources and Environment University of Florida Gainesville FL USA
| | - Felipe A. Hernández
- Instituto de Medicina Preventiva VeterinariaFacultad de Ciencias VeterinariasEdificio Federico Saelzer Valdivia Chile
| | - James E. Hines
- U.S. Geological SurveyPatuxent Wildlife Research Center Beltsville MD USA
| | - James D. Nichols
- U.S. Geological SurveyPatuxent Wildlife Research Center Laurel MD USA
| | - Madan K. Oli
- Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
| |
Collapse
|
17
|
Otuboah FY, Zheng J, Chen C, Wang Z, Wan X, Sun L. High-throughput and uniform large field-of-view multichannel fluorescence microscopy with super-thin dichroism for a dPCR gene chip. APPLIED OPTICS 2020; 59:10768-10776. [PMID: 33361897 DOI: 10.1364/ao.403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the rapid development of digital precision medicine, the digital polymerase chain reaction (dPCR) deoxyribonucleic acid (DNA) gene chip integrates more channels with smaller size and larger area, which leads to a higher technical requirement for commercial optical fluorescence microscopy. The multitime image splicing method is widely used for DNA detection. However, it consumes time and has visible seamless image results. This work has demonstrated the design and fabrication of a three channel reversed and reduced fluorescence microscopic imaging system with high-resolution and large field of view for one-time imaging. We introduced the super ultra-thin dichroic mirror into the space between the objective lens and the gene chip to achieve a uniform illumination and a strong signal for the large area gene chip. The fabricated new fluorescence microscopy can take a one-time imaging for the 28×18mm dPCR gene chip with more than 20,000 multi micro-droplets within FAM, HEX, and ROX fluorescence channels. The optical system was designed with a numerical aperture (NA) of 0.106. Modulation transfer function (MTF) is higher than 0.675 at 70 lp/mm, and the function resolution capability is 10 µm with the whole magnification of -0.65times. The fly's eye lens-based illumination system was tested with a uniform output of over 90% in the whole ϕ34.7mm chip area. The design was tested, and the experimental results showed that this new system provides a fast, efficient, and professional optical imaging method for detection of the new emerged digital PCR gene chip, which has larger area and more channels.
Collapse
|
18
|
Lei S, Gu X, Zhong Q, Duan L, Zhou A. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Wen W, Shi L, Chen X. Simultaneous Detection of Actinobacillus pleuropneumoniae and Haemophilus parasuis in Pig by Duplex Droplet Digital PCR. EFOOD 2020. [DOI: 10.2991/efood.k.200918.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
20
|
Zhang Z, Zhang Y, Lin X, Chen Z, Wu S. Development of a novel reverse transcription droplet digital PCR assay for the sensitive detection of Senecavirus A. Transbound Emerg Dis 2018; 66:517-525. [PMID: 30375741 DOI: 10.1111/tbed.13056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
In pigs, Senecavirus A (SVA) causes a vesicular disease that is clinically indistinguishable from foot-and-mouth disease, vesicular stomatitis and swine vesicular disease. Sensitive and specific detection of SVA is critical for controlling this emerging disease. In this study, a novel reverse transcription droplet digital PCR (RT-ddPCR) assay, targeting the conserved viral polymerase 3D gene, was established for the detection of SVA. This assay exhibited good linearity, repeatability and reproducibility, and maintained linearity at extremely low concentrations of SVA nucleic acid templates. The detection limit of RT-ddPCR was 1.53 ± 0.22 copies of SVA RNA per reaction (n = 8), and the assay showed approximately 10-fold greater sensitivity than a reverse transcription real-time PCR (RT-rPCR) assay. Moreover, specificity analysis showed that the RT-ddPCR for SVA had no cross-reactivity with other important swine pathogens. In clinical diagnosis of 134 pig serum and tissue samples, 26 and 21 samples were identified as positive by RT-ddPCR and RT-rPCR, respectively. The overall agreement between the two assays was 96.27% (129/134). Further linear regression analysis showed a significant correlation between the RT-ddPCR and RT-rPCR assays with an R2 value of 0.9761. Our results indicate that the RT-ddPCR assay is a robust diagnostic tool for the sensitive detection of SVA, even in samples with a low viral load.
Collapse
Affiliation(s)
- Zhou Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yongning Zhang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xiangmei Lin
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
21
|
A novel fluorescent immunochromatographic strip combined with pocket fluorescence observation instrument for rapid detection of PRV. Anal Bioanal Chem 2018; 410:7655-7661. [PMID: 30246220 DOI: 10.1007/s00216-018-1379-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Pseudorabies virus (PRV) is an acute and thermal infectious disease in domestic animals. Pigs are a main source of PRV infection, which causes high mortality rates for newborn infected piglets and high miscarriage rates for infected adults. Therefore, early control of PRV is necessary to avoid significant economic loss. We have developed a novel fluorescent immunochromatographic strip (F-ICS) for rapid, sensitive, and specific detection of PRV with a limit of detection (LOD) of 0.13 ng mL-1 and a detection linear range (DLR) between 0.13 and 2.13 ng mL-1. The detection limit was about 10 times lower than the colloidal gold strip. In tests of clinical samples, the F-ICS was largely consistent with PCR results, indicating its practical clinical application. In addition, for easy observation of the F-ICS signal by eye, we present a matching 3D-printed pocket fluorescence observation instrument (PFOI) that allows for use of the F-ICS in the field as easily as conventional colloidal gold strips. Graphical Abstract ᅟ.
Collapse
|