1
|
Dong X, Tang Z, Jiang X, Fu Q, Xu D, Zhang L, Qiu X. A highly sensitive, real-time centrifugal microfluidic chip for multiplexed detection based on isothermal amplification. Talanta 2023; 268:125319. [PMID: 39491947 DOI: 10.1016/j.talanta.2023.125319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
A real-time centrifugal microfluidic chip with a companion analyzer was developed for highly sensitive, multiplexed nucleic acid detection based on RPA (recombinase polymerase amplification) isothermal amplification. In order to improve the detection sensitivity, two different optimization strategies were systematically studied. Witnessing the high viscosity of RPA reagent, one way was to improve the amplification efficiency by intentionally introducing active mixing based on centrifugal actuation. While the other way was to improve the detection sensitivity by utilizing two-stage amplification. The templates were pre-amplified in the first-stage amplification chamber before they were aliquoted and distributed into a couple of second-stage ones for multiplexed detection. Different mixing methods relative to different actuation time were studied and compared. Similarly, different two-stage amplification modes relative to different time protocols were compared as well. Totally four different amplification modes including with or without mixing, and with or without two-stage amplification, were systematically analyzed and compared. It was found that, the detection sensitivity could be significantly improved by the two-stage amplification with active mixing. Furthermore, as a proof of concept, the performance of the developed microfluidic chip was demonstrated by successfully detecting different genes of African swine fever virus (ASFV) in parallel with high sensitivity.
Collapse
Affiliation(s)
- Xiaobin Dong
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiqian Tang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaodan Jiang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiang Fu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Donglin Xu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Ji C, Zhou L, Chen Y, Fang X, Liu Y, Du M, Lu X, Li Q, Wang H, Sun Y, Lan T, Ma J. Microfluidic-LAMP chip for the point-of-care detection of gene-deleted and wild-type African swine fever viruses and other four swine pathogens. Front Vet Sci 2023; 10:1116352. [PMID: 36876016 PMCID: PMC9978214 DOI: 10.3389/fvets.2023.1116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Different pathogens causing mixed infection are now threatening the pig industry in the context of the African Swine Fever (ASF) circulating especially in China, and it is crucial to achieving the early diagnosis of these pathogens for disease control and prevention. Methods Here we report the development of a rapid, portable, sensitive, high-throughput, and accurate microfluidic-LAMP chip detection system for simultaneous detection and differentiation of gene-deleted type and wild-type African swine fever virus (ASFV), pseudorabie virus (PRV), porcine parvovirus (PPV), porcine circovirus type 2 (PCV2), and porcine reproductive and respiratory syndrome (PRRSV). Results and discussion The newly developed system was shown to be sensitive with detection limits of 101 copies/μl for ASFV-MGF505-2R/P72, PPV, and PCV2, 102 copies/μl for ASFV-CD2v, PRV, and PRRSV. The system was highly specific (100%) and stable (C.V.s < 5%) in its ability to detect different pathogens. A total 213 clinical samples and 15 ASFV nucleic acid samples were collected to assess the performance of the detection system, showing highly effective diagnosis. Altogether, the developed microfluidic-LAMP chip system provides a rapid, sensitive, high-throughput and portable diagnostic tool for the accurate detection of multiple swine pathogens.
Collapse
Affiliation(s)
- Chihai Ji
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yonghui Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanhong Liu
- Ningbo iGene Technology Co., Ltd., Ningbo, China
| | - Mengkan Du
- Hangzhou Xiaoshan District Animal Husbandry and Veterinary Development Center, Xiaoshan Bureau of Animal Husbandry and Veterinary, Hangzhou, China
| | - Xiandong Lu
- Ningbo iGene Technology Co., Ltd., Ningbo, China
| | - Qianniu Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tian Lan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Li M, Ge H, Sun Z, Fu J, Cao L, Feng X, Meng G, Peng Y, Liu Y, Zhao C. A loop-mediated isothermal amplification-enabled analytical assay for the detection of SARS-CoV-2: A review. Front Cell Infect Microbiol 2022; 12:1068015. [PMID: 36619749 PMCID: PMC9816412 DOI: 10.3389/fcimb.2022.1068015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The number of words: 4645, the number of figures: 4, the number of tables: 1The outbreak of COVID-19 in December 2019 caused a global pandemic of acute respiratory disease, and with the increasing virulence of mutant strains and the number of confirmed cases, this has resulted in a tremendous threat to global public health. Therefore, an accurate diagnosis of COVID-19 is urgently needed for rapid control of SARS-CoV-2 transmission. As a new molecular biology technology, loop-mediated isothermal amplification (LAMP) has the advantages of convenient operation, speed, low cost and high sensitivity and specificity. In the past two years, rampant COVID-19 and the continuous variation in the virus strains have demanded higher requirements for the rapid detection of pathogens. Compared with conventional RT-PCR and real-time RT-PCR methods, genotyping RT-LAMP method and LAMP plus peptide nucleic acid (PNA) probe detection methods have been developed to correctly identified SARS-CoV-2 variants, which is also why LAMP technology has attracted much attention. LAMP detection technology combined with lateral flow assay, microfluidic technology and other sensing technologies can effectively enhance signals by nucleic acid amplification and help to give the resulting output in a faster, more convenient and user-friendly way. At present, LAMP plays an important role in the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mingna Li
- College of public health, Jilin Medical University, Jilin, China,College of medical technology, Beihua University, Jilin, China
| | - Hongjuan Ge
- College of public health, Jilin Medical University, Jilin, China
| | - Zhe Sun
- College of public health, Jilin Medical University, Jilin, China,College of medical technology, Beihua University, Jilin, China
| | - Jangshan Fu
- College of public health, Jilin Medical University, Jilin, China
| | - Lele Cao
- College of public health, Jilin Medical University, Jilin, China
| | - Xinrui Feng
- College of public health, Jilin Medical University, Jilin, China,Medical college, Yanbian University, Jilin, China
| | - Guixian Meng
- College of medical laboratory, Jilin Medical University, Jilin, China
| | - Yubo Peng
- Business School, The University of Adelaide, Adelaide, SA, Australia
| | - Yan Liu
- College of public health, Jilin Medical University, Jilin, China,*Correspondence: Yan Liu, ; Chen Zhao,
| | - Chen Zhao
- College of public health, Jilin Medical University, Jilin, China,*Correspondence: Yan Liu, ; Chen Zhao,
| |
Collapse
|
4
|
Areekit S, Tangjitrungrot P, Khuchareontaworn S, Rattanathanawan K, Jaratsing P, Yasawong M, Chansiri G, Viseshakul N, Chansiri K. Development of Duplex LAMP Technique for Detection of Porcine Epidemic Diarrhea Virus (PEDV) and Porcine Circovirus Type 2 (PCV 2). Curr Issues Mol Biol 2022; 44:5427-5439. [PMID: 36354680 PMCID: PMC9689611 DOI: 10.3390/cimb44110368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 2 (PCV2) are both important global pathogenic viruses which have a significant impact on the swine industry. In this study, a duplex loop-mediated isothermal amplification (duplex LAMP) method was developed in combination with lateral flow dipstick (LFD) for simultaneous detection of PEDV and PCV2 using specific sets of primers and probes designed based on the conserved regions of a spike gene (KF272920) and an ORF gene (EF493839), respectively. The limit of detection (LOD) values of the duplex LAMP-LFD for the detection of PEDV and PCV2 were 0.1 ng/µL and 0.246 ng/µL, respectively. The LOD of duplex LAMP-LFD was 10-times more sensitive than conventional PCR and RT-PCR-agarose gel-electrophoresis (PCR-AGE and RT-PCR-AGE). No cross-reaction to each other and to other pathogenic viruses that can infect pigs were observed according to analytical specificity tests. The duplex LAMP-LFD method for the simultaneous detection of PEDV and PCV2 co-infection could be completed within approximately 1.5 h, and only a simple heating block was required for isothermal amplification. The preliminary validation using 50 swine clinical samples with positive and negative PEDV and/or PCV2 revealed that the sensitivity, specificity, and accuracy of duplex LAMP-LFD were all 100% in comparison to conventional PCR and RT-PCR. Hence, this study suggests that duplex LAMP-LFD is a promising tool for the early detection and initial screening of PEDV and PCV2, which could be beneficial for prevention, planning, and epidemiological surveys of these diseases.
Collapse
Affiliation(s)
- Supatra Areekit
- Innovative Learning Center, Srinakharinwirot University, Bangkok 10110, Thailand
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pongbun Tangjitrungrot
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | - Pornpun Jaratsing
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Montri Yasawong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Gaysorn Chansiri
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nareerat Viseshakul
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kosum Chansiri
- Center of Excellence in Biosensors, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
5
|
Tu F, Zhang Y, Xu S, Yang X, Zhou L, Ge X, Han J, Guo X, Yang H. Detection of pseudorabies virus with a real-time recombinase-aided amplification assay. Transbound Emerg Dis 2021; 69:2266-2274. [PMID: 34273259 DOI: 10.1111/tbed.14241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Pseudorabies (PR) is an acute infectious disease of pigs caused by pseudorabies virus (PRV), which has caused great economic losses to the pig industry worldwide. Reliable and timely diagnose is crucial for the surveillance, control and eradication of PR. Here, a real-time fluorescent recombinase-aided amplification (real-time RAA) assay was established to detect PRV. Primers and probes were designed based on the conserved regions of the PRV gE gene. The assay was specific for the detection of wild-type PRV, showing no cross-reactivity with other important porcine viruses (including PRV gE-deleted vaccine strains). Analytical sensitivity of the assay was three 50% tissue culture infectious doses (TCID50 ) of PRV DNA per reaction with 95% reliability, which is comparable to that of a PRV-specific real-time PCR (qPCR) assay. In diagnosis of 206 clinical tissue samples, the diagnose accordance rate between the real-time RAA assay and qPCR assay was 97.57% (201/206). Interestingly, the amplified products of real-time RAA could be visualized under a portable blue light instrument, making it possible for the rapid detection of PRV in resource-limited settings and on-site screening. Therefore, our developed real-time RAA assay is a diagnostic method for the rapid detection of PRV in the field.
Collapse
Affiliation(s)
- Fei Tu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Xintan Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
6
|
Rajkhowa S, Choudhury M, Pegu SR, Sarma DK, Hussain I. Development of a rapid loop-mediated isothermal amplification (LAMP) assay for visual detection of porcine parvovirus (PPV) and its application. Braz J Microbiol 2021; 52:1725-1732. [PMID: 34241828 DOI: 10.1007/s42770-021-00569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/01/2021] [Indexed: 11/26/2022] Open
Abstract
Porcine parvovirus (PPV) infection is one of the most important causes of reproductive failure in pigs impacting the piggery industry globally with huge economic losses. A cost-effective, simple, rapid, specific, and sensitive method is critical for monitoring PPV infection on pig farms. The main aim of the present study was to develop and evaluate a loop-mediated isothermal amplification (LAMP) assay for rapid visual detection of porcine parvovirus (PPV) in pigs. A set of six LAMP primers including two outer primers, two inner primers, and two loop primers were designed utilizing the conserved region of capsid protein VP2 gene sequences of PPV and was applied for detection of PPV from porcine samples. Time and temperature conditions for amplification of PPV genes were optimized to be 30 min at 63 °C. The developed assay was ten-fold more sensitive than conventional PCR with analytical sensitivity of 20 pg and 200 pg, respectively. This is the first report of detection of PPV by LAMP assay from India. The assay did not cross-react with porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), or classical swine fever virus (CSFV). The LAMP assay was assembled into a LAMP assay kit of 20 reactions and was validated in different laboratories in India. The newly developed LAMP assay was proved to be a specific, sensitive, rapid, and simple method for visual detection of PPV which does not require even costly equipments for performing the test. It complements and extends previous methods for PPV detection and provides an alternative approach for detection of PPV.
Collapse
Affiliation(s)
- S Rajkhowa
- Animal Health Laboratory, Indian Council of Agricultural Research - National Research Centre On Pig (ICAR-NRC On Pig), Rani, Guwahati, 781131, Assam, India.
| | - M Choudhury
- Animal Health Laboratory, Indian Council of Agricultural Research - National Research Centre On Pig (ICAR-NRC On Pig), Rani, Guwahati, 781131, Assam, India
| | - S R Pegu
- Animal Health Laboratory, Indian Council of Agricultural Research - National Research Centre On Pig (ICAR-NRC On Pig), Rani, Guwahati, 781131, Assam, India
| | - D K Sarma
- Department of Microbiology, AAU, Guwahati, India
| | - I Hussain
- Division of Veterinary Microbiology & Immunology, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
7
|
|