1
|
Jaturanratsamee K, Jiwaganont P, Sukumolanan P, Petchdee S. PKD1 gene mutation and ultrasonographic characterization in cats with renal cysts. F1000Res 2024; 12:760. [PMID: 39108347 PMCID: PMC11301141 DOI: 10.12688/f1000research.134906.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background Polycystic kidney disease (PKD) has a complex phenotype partly explained by genetic variants related to this disease. Ultrasonography is a promising approach for defining clinical signs. This study aimed to assess kidney characteristics in cats with Polycystin-1 (PKD1) gene mutations and wild-type cats. Kidney characteristics were identified by ultrasonography. Methods A total of 108 cats of variable breeds aged an average of 37.01±3.50 months were included. Blood examination and biochemical tests were evaluated. For cystic formation, renal ultrasound was performed. The PKD1 gene mutation was identified via polymerase chain reaction (PCR) and DNA sequencing. Matrix correlation and effectiveness of ultrasound for PKD1 mutation detection were determined. Results The results showed that 19.44% of cats had PKD1 mutations, a high prevalence in Persian and Persian-related breed cats. Our results demonstrated the characteristics of kidneys in wild-type cats and cats with gene mutations. Based on ultrasonography results, there was an association between cats with gene mutations and cyst formation. The findings indicated that ultrasound did not detect cysts in cats aged 4-36 months, supporting the evidence that PKD1 gene mutations may not be present. This study found high sensitivity and renal specificity ultrasound for PKD1 heterozygous mutation. Moreover, cystic formation via renal ultrasound showed an increased risk for PKD1 mutation 2,623 times compared to normal kidneys. Conclusions Ultrasonographic examination, coupled with genetic investigations, may help to clarify the phenotypic variability of PKD1. The phenotypic profile of PKD1 will guide therapeutic outcomes and reduce the prevalence of PKD morbidity and mortality in cats.
Collapse
Affiliation(s)
- Kotchapol Jaturanratsamee
- Graduate School, Bio-Veterinary Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| | - Palin Jiwaganont
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| | - Pratch Sukumolanan
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| |
Collapse
|
2
|
Michel-Regalado NG, Ayala-Valdovinos MA, Galindo-García J, Duifhuis-Rivera T, Virgen-Méndez A. Prevalence of polycystic kidney disease in Persian and Persian-related cats in western Mexico. J Feline Med Surg 2022; 24:1305-1308. [PMID: 35951480 PMCID: PMC10812362 DOI: 10.1177/1098612x221114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Autosomal dominant polycystic kidney disease (ADPKD), the most frequently diagnosed hereditary disease affecting Persian cats, is caused by a cytosine-to-adenine transversion (10063C>A) in PKD1, the gene that codes for polycystin-1. The objective of this study was to provide a preliminary estimate of the frequency of the pathogenic 10063C>A single nucleotide polymorphism (SNP) of PKD1 in Persian and Persian-related cat breeds in western Mexico. METHODS Blood samples were collected from 104 cats (89 Persian, seven Persian crossbreed, five Siamese and three Himalayan cats). Genotyping was performed with our proposed PCR restriction fragment length polymorphism (RFLP) assay, as well as a previously established PCR-RFLP method for validation. The genotypes of control cats were corroborated by a commercial veterinary genetics laboratory. RESULTS Our proposed PCR-RFLP assay and the validated PCR-RFLP methodology indicated that 24/104 (23.1%) cats in this study were heterozygous carriers of the 10063C>A SNP, including 23/89 Persian cats (25.8%) and 1/7 Persian crossbreed cats (14.3%). No Siamese or Himalayan cats were carriers. There were no discrepancies between the results obtained with our proposed assay and those obtained with the validation method or with commercial laboratory results. CONCLUSIONS AND RELEVANCE The carrier frequency of the PKD1 10063C>A SNP in Persian and Persian-related cat breeds in western Mexico was found to be 23.1%. ADPKD frequencies among cat populations in Mexico have not been published previously. Genotyping assays can be used to facilitate the selection of breeding stocks by local breeders and veterinarians to avoid propagation of ADPKD.
Collapse
Affiliation(s)
- Néstor G Michel-Regalado
- Department of Animal Production, Veterinary Science Division, University Center of Biological and Agricultural Sciences, University of Guadalajara, Zapopan, México
| | - Miguel A Ayala-Valdovinos
- Department of Animal Production, Veterinary Science Division, University Center of Biological and Agricultural Sciences, University of Guadalajara, Zapopan, México
| | - Jorge Galindo-García
- Department of Animal Production, Veterinary Science Division, University Center of Biological and Agricultural Sciences, University of Guadalajara, Zapopan, México
| | - Theodor Duifhuis-Rivera
- Department of Animal Production, Veterinary Science Division, University Center of Biological and Agricultural Sciences, University of Guadalajara, Zapopan, México
| | - Abraham Virgen-Méndez
- Department of Animal Production, Veterinary Science Division, University Center of Biological and Agricultural Sciences, University of Guadalajara, Zapopan, México
| |
Collapse
|
3
|
Anderson H, Davison S, Lytle KM, Honkanen L, Freyer J, Mathlin J, Kyöstilä K, Inman L, Louviere A, Chodroff Foran R, Forman OP, Lohi H, Donner J. Genetic epidemiology of blood type, disease and trait variants, and genome-wide genetic diversity in over 11,000 domestic cats. PLoS Genet 2022; 18:e1009804. [PMID: 35709088 PMCID: PMC9202916 DOI: 10.1371/journal.pgen.1009804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the largest DNA-based study of domestic cats to date, 11,036 individuals (10,419 pedigreed cats and 617 non-pedigreed cats) were genotyped via commercial panel testing elucidating the distribution and frequency of known disease, blood type, and physical trait associated genetic variants across cat breeds. This study provides allele frequencies for many disease-associated variants for the first time and provides updates on previously reported information with evidence suggesting that DNA testing has been effectively used to reduce disease associated variants within certain pedigreed cat populations over time. We identified 13 disease-associated variants in 47 breeds or breed types in which the variant had not previously been documented, highlighting the relevance of comprehensive genetic screening across breeds. Three disease-associated variants were discovered in non-pedigreed cats only. To investigate the causality of nine disease-associated variants in cats of different breed backgrounds our veterinarians conducted owner interviews, reviewed clinical records, and invited cats to have follow-up clinical examinations. Additionally, genetic variants determining blood types A, B and AB, which are relevant clinically and in cat breeding, were genotyped. Appearance-associated genetic variation in all cats is also discussed. Lastly, genome-wide SNP heterozygosity levels were calculated to obtain a comparable measure of the genetic diversity in different cat breeds. This study represents the first comprehensive exploration of informative Mendelian variants in felines by screening over 10,000 pedigreed cats. The results qualitatively contribute to the understanding of feline variant heritage and genetic diversity and demonstrate the clinical utility and importance of such information in supporting breeding programs and the research community. The work also highlights the crucial commitment of pedigreed cat breeders and registries in supporting the establishment of large genomic databases, that when combined with phenotype information can advance scientific understanding and provide insights that can be applied to improve the health and welfare of cats. Domestic cats are one of the world’s most popular companion animals, of which pedigreed cats represent small unique subpopulations. Genetic research on pedigreed cats has facilitated discoveries of heritable conditions resulting in the availability of DNA testing for studying and managing inherited disorders and traits in specific cat breeds. We have explored an extensive study cohort of 11,036 domestic cat samples representing pedigreed cats of 90 breeds and breed types. This work provided insight into the heritage of feline disease and trait alleles. We gained knowledge on the most common and relevant genetic markers for inherited disorders and physical traits, and the genetic determinants of the clinically relevant AB blood group system. We also used a measure of genetic diversity to compare inbreeding levels within and between breeds. This information can help support sustainable breeding goals within the cat fancy. Direct-to-consumer genetic tests help to raise awareness of various inherited single gene conditions in cats and provide information that owners can share with their veterinarians. In due course, ventures of this type will enable the genetics of common complex feline disease to be deciphered, paving the way for precision healthcare with the potential to ultimately improve welfare for all cats.
Collapse
Affiliation(s)
- Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
- * E-mail:
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Katherine M. Lytle
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Julia Mathlin
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
4
|
Schirrer L, Marín-García PJ, Llobat L. Feline Polycystic Kidney Disease: An Update. Vet Sci 2021; 8:269. [PMID: 34822642 PMCID: PMC8625840 DOI: 10.3390/vetsci8110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a disease that affects felines and other mammals, such as humans. The common name is autosomal dominant polycystic kidney disease (ADPKD) and causes a progressive development of fluid-filled cysts in the kidney and sometimes in other organs as the liver and pancreas. The formation and growth of cysts progress slowly, causing deterioration of kidney tissue and a gradual decrease in kidney function, leading to irreversible kidney failure. Feline PKD or ADPKD in humans are hereditary pathologies of autosomal dominant transmission. ADPKD is one of the genetic diseases with the highest prevalence in humans. In cats, this disease also has a high prevalence, mainly in the Persian breed, being one of the most common feline genetic diseases. Imaging tests seem to be the most reliable method for diagnosis of the disease, although more genetic tests are being developed to detect the presence of the responsible mutation. In this review, we summarize the current knowledge about feline PKD to guide future research related to an adequate diagnosis and early detection of causal mutations. It can allow the establishment of selection programs to reduce or eliminate this pathology in feline breeds.
Collapse
Affiliation(s)
| | - Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Sciences and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain;
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Sciences and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain;
| |
Collapse
|