1
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2024. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
2
|
Lim JS, Lee SH, Yun H, Lee DY, Cho N, Yoo G, Choi JU, Lee KY, Bach TT, Park SJ, Cho YC. Inhibitory Effects of Ehretia tinifolia Extract on the Excessive Oxidative and Inflammatory Responses in Lipopolysaccharide-Stimulated Mouse Kupffer Cells. Antioxidants (Basel) 2023; 12:1792. [PMID: 37891872 PMCID: PMC10604099 DOI: 10.3390/antiox12101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Sung Ho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun 55365, Republic of Korea;
| | - Jeong Uk Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam;
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| |
Collapse
|
3
|
Finno CJ, Johnson AL. Equine Neuroaxonal Dystrophy and Degenerative Myeloencephalopathy. Vet Clin North Am Equine Pract 2022; 38:213-224. [PMID: 35811203 DOI: 10.1016/j.cveq.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Neuroaxonal degenerative disease in the horse is termed equine neuroaxonal dystrophy (eNAD), when pathologic lesions are localized to the brainstem and equine degenerative myeloencephalopathy (EDM) and degenerative changes extend throughout the spinal cord. Both pathologic conditions result in identical clinical disease, most commonly characterized by the insidious onset of ataxia during early development. However, later onset of clinical signs and additional clinical features, such as behavior changes, is also observed. A definitive diagnosis of eNAD/EDM requires histologic evaluation of the caudal medulla and cervicothoracic spinal cord. Strong evidence has suggested that eNAD/EDM is an inherited disorder and there seems to be a role for vitamin E acting as an environmental modifier to determine the overall severity of the phenotype of horses affected with eNAD/EDM.
Collapse
Affiliation(s)
- Carrie J Finno
- Department of Veterinary Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Room 4206 Vet Med 3A One Shields Avenue, Davis, CA 95616, USA.
| | - Amy L Johnson
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine- New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA
| |
Collapse
|
4
|
Hales EN, Habib H, Favro G, Katzman S, Sakai RR, Marquardt S, Bordbari MH, Ming-Whitfield B, Peterson J, Dahlgren AR, Rivas V, Ramirez CA, Peng S, Donnelly CG, Dizmang BS, Kallenberg A, Grahn R, Miller AD, Woolard K, Moeller B, Puschner B, Finno CJ. Increased α-tocopherol metabolism in horses with equine neuroaxonal dystrophy. J Vet Intern Med 2021; 35:2473-2485. [PMID: 34331715 PMCID: PMC8478026 DOI: 10.1111/jvim.16233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Background Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with a vitamin E deficiency within the first year of life. Vitamin E consists of 8 isoforms metabolized by the CYP4F2 enzyme. No antemortem diagnostic test currently exists for eNAD/EDM. Hypothesis/Objectives Based on the association of α‐tocopherol deficiency with the development of eNAD/EDM, we hypothesized that the rate of α‐tocopherol, but not γ‐tocopherol or tocotrienol metabolism, would be increased in eNAD/EDM‐affected horses. Animals Vitamin E metabolism: Proof of concept (POC) study; eNAD/EDM‐affected (n = 5) and control (n = 6) horses. Validation study: eNAD/EDM‐affected Quarter Horses (QHs; n = 6), cervical vertebral compressive myelopathy affected (n = 6) horses and control (n = 29) horses. CYP4F2 expression and copy number: eNAD/EDM‐affected (n = 12) and age‐ and sex‐matched control (n = 11‐12) horses. Methods The rates of α‐tocopherol/tocotrienol and γ‐tocopherol/tocotrienol metabolism were assessed in equine serum (POC and validation) and urine (POC only) using liquid chromatography tandem mass spectrometry (LC‐MS/MS). Quantitative reverse‐transcriptase PCR (qRT‐PCR) and droplet digital (dd)‐PCR were used to assay expression and genomic copy number of a CYP4F2 equine ortholog. Results Metabolic rate of α‐tocopherol was increased in eNAD/EDM horses (POC,P < .0001; validation, P = .03), with no difference in the metabolic rate of γ‐tocopherol. Horses with eNAD/EDM had increased expression of the CYP4F2 equine orthologue (P = .02) but no differences in copy number. Conclusions and Clinical Importance Increased α‐tocopherol metabolism in eNAD/EDM‐affected QHs provides novel insight into alterations in vitamin E processing in eNAD/EDM and highlights the need for high‐dose supplementation to prevent the clinical phenotype in genetically susceptible horses.
Collapse
Affiliation(s)
- Erin N Hales
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Hadi Habib
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Gianna Favro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Scott Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - R Russell Sakai
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Sabin Marquardt
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Brittni Ming-Whitfield
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Janel Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Anna R Dahlgren
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Victor Rivas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Carolina Alanis Ramirez
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Callum G Donnelly
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Bobbi-Sue Dizmang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Angelica Kallenberg
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Robert Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Kevin Woolard
- Department of Pathology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Benjamin Moeller
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Birgit Puschner
- Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|