1
|
Hong D, Bian J, Zeng L, Huang S, Qin Y, Chen Y, Wei Z, Huang W, Ouyang K. A novel VP1-based enzyme-linked immunosorbent assay revealed widespread Enterovirus G infections in Guangxi, China. J Virol Methods 2024; 325:114873. [PMID: 38142820 DOI: 10.1016/j.jviromet.2023.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Enterovirus G (EV-G) has recently been shown to affect weight gain and cause neurological symptoms in piglets. However, the serological investigation of EV-G is limited. In this study, we developed a novel serological detection method based on the structural protein, VP1 of EV-G. The intra-assay and inter-assay coefficient variations were 3.2-8.9% and 2.6-8.0%, respectively. There was no cross-reaction of the VP1-based enzyme-linked immunosorbent assay (ELISA) with antisera against the other known porcine viruses. In addition, a comparison was made with other methods including the developed indirect ELISAs based on VP2 and VP3 proteins and western blot (WB) analysis, which demonstrated the reliability of the novel method. Using the VP1-based ELISA, we carried out the first seroepidemiological survey of EV-G in China by testing 1041 serum samples collected from different pig farms in Guangxi from 2019 to 2021. Our results showed that 68.78% of the serum samples and 100% of the pig farms were positive for EV-G, with a relatively high incidence of seropositivity in pigs of different ages. This was specifically evident in fattening pigs and sows, which may suggest that the piglets have experienced an infection with EV-G during their growth process. Our data provide the first serological evidence of EV-G infections in pigs from China and reveal the widespread presence of EV-G infections in Guangxi, China.
Collapse
Affiliation(s)
- Dalin Hong
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Jinni Bian
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Lingyou Zeng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shiting Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yifeng Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Ying Chen
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Zuzhang Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Weijian Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Kang Ouyang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China.
| |
Collapse
|
2
|
Torreggiani C, Maes D, Franchi L, Raffi V, Borri E, Prosperi A, Chiapponi C, Luppi A. Premature farrowing and stillbirths in two organic sow farms due to riboflavin deficiency. Porcine Health Manag 2023; 9:12. [PMID: 37143142 PMCID: PMC10161553 DOI: 10.1186/s40813-023-00308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Riboflavin deficiency can lead to premature farrowing, stillborn piglets, weak-born piglets and neonatal death. Riboflavin (vitamin B2) is considered essential for reproductive function. The longer the period on riboflavin-deficient diets, the more severe the clinical signs become. Litter size as well as body size of piglets can also be considered risk factors that may contribute to the problem. CASE PRESENTATION This case report involved two organic farms of 320 (farm A) and 250 sows (farm B). Between 2019 and 2020, premature farrowing with weak-born or stillborn piglets and severe intra-litter mortality, ranging from 60 to 100% were observed. Investigations for infectious causes of reproductive disease, drinking water quality and general feed composition were performed, but showed no significant results. Feed composition was subsequently evaluated more in detail. Riboflavin levels were very low specifically 1.25 mg/kg of diet (3.75 mg/kg of diet is the NRC minimum recommended level). Riboflavin as a vitamin complex supplement (B complex) was administered to sows one month before the farrowing date and this led to a rapid improvement of the problem such that no stillbirth or intra-litter mortality was observed. CONCLUSIONS The clinical presentation, the low riboflavin levels in the feed below the recommended levels for gestating sows and the effectiveness of the riboflavin supplementation, led to an ex juvantibus diagnosis of this deficiency condition. This case report highlights that riboflavin deficiency during gestation should be considered in case of premature parturition and stillborn litters.
Collapse
Affiliation(s)
- Camilla Torreggiani
- IZSLER, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna, Parma, Italy.
| | - Dominiek Maes
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | | | | - Alice Prosperi
- IZSLER, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna, Parma, Italy
| | - Chiara Chiapponi
- IZSLER, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna, Parma, Italy
| | - Andrea Luppi
- IZSLER, Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'Emilia-Romagna, Parma, Italy
| |
Collapse
|
3
|
Liang W, Wu X, Ding Z, Zhong S, Qian X, Ye P, Liu H, Chen Z, Zhang J, Cao H, Hu G, Luo J, Li Z, Ding N, Hu R. Identification of a novel porcine Teschovirus 2 strain as causative agent of encephalomyelitis in suckling piglets with high mortality in China. BMC Vet Res 2023; 19:2. [PMID: 36597091 PMCID: PMC9810521 DOI: 10.1186/s12917-022-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Porcine Teschovirus (PTV), also named Teschovirus A, is prevalent in pig populations, mainly causing neurological symptoms, diarrhea, pneumonia, and reproductive failure, however the morbidity and mortality are usually low in pig farms. CASE PRESENTATION In this study, we reported a PTV outbreak investigation in one large-scale pig farm in China with severe symptoms including diarrhea, lethargy, locomotor ataxia, nystagmus, paralysis of the hind limbs, and coma in piglets. More importantly, the mortality reached 38% in suckling pigs, which is remarkably high in PTV history. A novel PTV strain, named HeNZ1, was isolated from cerebral samples of one suckling pig and the genome sequence was obtained by NGS sequencing. Phylogenetic and evolutionary divergence analyses revealed that HeNZ1 belongs to PTV genotype 2. Surprisingly, the VP1 coding region of HeNZ1 shares the highest sequence similarity with European PTV-2 strains, instead of China domestic PTV-2 strains, implying it may not derive from China local PTV-2 strains. Multiple sequence alignment and B cell epitope prediction of PTV VP1 and VP2 protein revealed 10 B cell epitopes, 5 mutant clusters and 36 unique mutation sites, of which 19 unique mutation sites are located in B cell epitopes and exposed on the surface of VP1 or VP2, implying significant antigenic drift potential of HeNZ1. CONCLUSION These results indicate that HeNZ1 is a highly virulent PTV-2 strain, which capable of causing severe neurological symptoms and high mortality in piglets. Bioinformatic analysis suggest that HeNZ1 is genetically and antigenically different from other Chinese PTV-2 strains. Overall, current case expanded our understanding of PTV-2 clinical spectrum and revealed the emergence of a highly virulent PTV-2 strain with substantial genetic diversity and antigenic drift potential in VP1 and VP2.
Collapse
Affiliation(s)
- Wenqi Liang
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Xiangdong Wu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Zhen Ding
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Shengwei Zhong
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Xinjie Qian
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Pei Ye
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Hao Liu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Zheng Chen
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Jinhua Zhang
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Huabin Cao
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Guoliang Hu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Junrong Luo
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Zuohua Li
- grid.257160.70000 0004 1761 0331College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 China
| | - Nengshui Ding
- grid.411859.00000 0004 1808 3238State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China ,Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, 363000 China
| | - Ruiming Hu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| |
Collapse
|
4
|
Metagenomic Analysis of RNA Fraction Reveals the Diversity of Swine Oral Virome on South African Backyard Swine Farms in the uMgungundlovu District of KwaZulu-Natal Province. Pathogens 2022; 11:pathogens11080927. [PMID: 36015047 PMCID: PMC9416320 DOI: 10.3390/pathogens11080927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous RNA viruses have been reported in backyard swine populations in various countries. In the absence of active disease surveillance, a persistent knowledge gap exists on the diversity of RNA viruses in South African backyard swine populations. This is the first study investigating the diversity of oral RNA virome of the backyard swine in South Africa. We used three samples of backyard swine oral secretion (saliva) collected from three distantly located backyard swine farms (BSFs) in the uMgungundlovu District, KwaZulu-Natal, South Africa. Total viral RNA was extracted and used for the library preparation for deep sequencing using the Illumina HiSeq X instrument. The FASTQ files containing paired-end reads were analyzed using Genome Detective v 1.135. The assembled nucleotide sequences were analyzed using the PhyML phylogenetic tree. The genome sequence analysis identified a high diversity of swine enteric viruses in the saliva samples obtained from BSF2 and BSF3, while only a few viruses were identified in the saliva obtained from BSF1. The swine enteric viruses belonged to various animal virus families; however, two fungal viruses, four plant viruses, and five unclassified RNA viruses were also identified. Specifically, viruses of the family Astroviridae, according to the number of reads, were the most prevalent. Of note, the genome sequences of Rotavirus A (RVA) and Rotavirus C (RVC) at BSF2 and RVC and Hepatitis E virus (HEV) at BSF3 were also obtained. The occurrence of various swine enteric viruses in swine saliva suggests a high risk of diarrhoeic diseases in the backyard swine. Of note, zoonotic viruses in swine saliva, such as RVA, RVC, and HEV, indicate a risk of zoonotic spillover to the exposed human populations. We recommend the implementation of biosecurity to ensure sustainable backyard swine farming while safeguarding public health.
Collapse
|
6
|
László Z, Pankovics P, Reuter G, Cságola A, Bodó K, Gáspár G, Albert M, Bíró H, Boros Á. Development and Large-Scale Testing of a Novel One-Step Triplex RT-qPCR Assay for Simultaneous Detection of “Neurotropic” Porcine Sapeloviruses, Teschoviruses (Picornaviridae) and Type 3 Porcine Astroviruses (Astroviridae) in Various Samples including Nasal Swabs. Viruses 2022; 14:v14030513. [PMID: 35336920 PMCID: PMC8952109 DOI: 10.3390/v14030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine sapeloviruses, teschoviruses of family Picornaviridae and type 3 porcine astroviruses of family Astroviridae are (re-)emerging enteric pathogens that could be associated with severe, disseminated infections in swine, affecting multiple organs including the central nervous system (CNS). Furthermore, small-scale pioneer studies indicate the presence of these viruses in porcine nasal samples to various extents. The laboratory diagnostics are predominantly based on the detection of the viral RNA from faecal and tissue samples using different nucleic-acid-based techniques such as RT-qPCR. In this study, a novel highly sensitive one-step triplex RT-qPCR assay was introduced which can detect all known types of neurotropic sapelo-, tescho- and type 3 astroviruses in multiple types of samples of swine. The assay was evaluated using in vitro synthesized RNA standards and a total of 142 archived RNA samples including known sapelo-, tescho- and type 3 astrovirus positive and negative CNS, enteric and nasal specimens. The results of a large-scale epidemiological investigation of these viruses on n = 473 nasal swab samples from n = 28 industrial-type swine farms in Hungary indicate that all three neurotropic viruses, especially type 3 astroviruses, are widespread and endemically present on most of the investigated farms.
Collapse
Affiliation(s)
- Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.); (G.G.)
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.); (G.G.)
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.); (G.G.)
| | - Attila Cságola
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary;
| | - Gábor Gáspár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.); (G.G.)
| | - Mihály Albert
- Ceva Phylaxia Ltd., 1107 Budapest, Hungary; (A.C.); (M.A.)
| | | | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Z.L.); (P.P.); (G.R.); (G.G.)
- Correspondence: ; Tel.: +36-72-536-251
| |
Collapse
|