1
|
Smallman TR, Perlaza-Jiménez L, Wang X, Korman TM, Kotsanas D, Gibson JS, Turni C, Harper M, Boyce JD. Pathogenomic analysis and characterization of Pasteurella multocida strains recovered from human infections. Microbiol Spectr 2024; 12:e0380523. [PMID: 38426766 PMCID: PMC10986470 DOI: 10.1128/spectrum.03805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Pasteurella multocida is an upper respiratory tract commensal in several mammal and bird species but can also cause severe disease in humans and in production animals such as poultry, cattle, and pigs. In this study, we performed whole-genome sequencing of P. multocida isolates recovered from a range of human infections, from the mouths of cats, and from wounds on dogs. Together with publicly available P. multocida genome sequences, we performed phylogenetic and comparative genomic analyses. While isolates from cats and dogs were spread across the phylogenetic tree, human infections were caused almost exclusively by subsp. septica strains. Most of the human isolates were capsule type A and LPS type L1 and L3; however, some strains lacked a capsule biosynthesis locus, and some strains contained a novel LPS outer-core locus, distinct from the eight LPS loci that can currently be identified using an LPS multiplex PCR. In addition, the P. multocida strains isolated from human infections contained novel mobile genetic elements. We compiled a curated database of known P. multocida virulence factor and antibiotic resistance genes (PastyVRDB) allowing for detailed characterization of isolates. The majority of human P. multocida isolates encoded a reduced range of iron receptors and contained only one filamentous hemagglutinin gene. Finally, gene-trait analysis identified a putative L-fucose uptake and utilization pathway that was over-represented in subsp. septica strains and may represent a novel host predilection mechanism in this subspecies. Together, these analyses have identified pathogenic mechanisms likely important for P. multocida zoonotic infections.IMPORTANCEPasteurella multocida can cause serious infections in humans, including skin and wound infections, pneumonia, peritonitis, meningitis, and bacteraemia. Cats and dogs are known vectors of human pasteurellosis, transmitting P. multocida via bite wounds or contact with animal saliva. The mechanisms that underpin P. multocida human predilection and pathogenesis are poorly understood. With increasing identification of antibiotic-resistant P. multocida strains, understanding these mechanisms is vital for developing novel treatments and control strategies to combat P. multocida human infection. Here, we show that a narrow range of P. multocida strains cause disease in humans, while cats and dogs, common vectors for zoonotic infections, can harbor a wide range of P. multocida strains. We also present a curated P. multocida-specific database, allowing quick and detailed characterization of newly sequenced P. multocida isolates.
Collapse
Affiliation(s)
- Thomas R. Smallman
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Laura Perlaza-Jiménez
- Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaochu Wang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tony M. Korman
- Monash University and Monash Health, Clayton, Victoria, Australia
| | - Despina Kotsanas
- Monash University and Monash Health, Clayton, Victoria, Australia
| | - Justine S. Gibson
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Marina Harper
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John D. Boyce
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Duan R, Lyu D, Qin S, Liang J, Gu W, Duan Q, Wu W, Tang D, Han H, Zheng X, Xi J, Bukai A, Lu X, Zhang P, Zhang D, Xiao M, Jing H, Wang X. Pasteurella multocida strains of a novel capsular serotype and lethal to Marmota himalayana on Qinghai-Tibet plateau in China. Int J Med Microbiol 2024; 314:151597. [PMID: 38217947 DOI: 10.1016/j.ijmm.2024.151597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.
Collapse
Affiliation(s)
- Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenpeng Gu
- Yunan Provincial Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weiwei Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Deming Tang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haonan Han
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu Province, China
| | - Jinxiao Xi
- Institute for Plague Prevention and Control, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Asaiti Bukai
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu Province, China
| | - Xinmin Lu
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu Province, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
3
|
Piorunek M, Brajer-Luftmann B, Walkowiak J. Pasteurella Multocida Infection in Humans. Pathogens 2023; 12:1210. [PMID: 37887726 PMCID: PMC10610061 DOI: 10.3390/pathogens12101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Pasteurella multocida (P. multocida) is an immobile, anaerobic, Gram-negative coccobacillus fermenting bacterium. This pathogen is commonly prevalent in the upper airways of healthy pets, such as cats and dogs, but was also confirmed in domestic cattle, rabbits, pigs, birds, and various wild animals. Infection in humans occurs as a result of biting, scratching, or licking by animals and contact with nasopharyngeal secretions. Inflammation at the site of infection develops within the first day from the injury. It is usually confined to the skin and subcutaneous tissue but, in particular situations, may spread to other organs and manifest as a severe systemic infection. Careful history-taking and microbiological confirmation of the infection enable diagnosis and appropriate treatment. Any wound resulting from an animal bite should be disinfected. The preferred and highly effective treatment against local P. multocida infection is penicillin or its derivatives. The prognosis for P. multocida infections depends on the infected site and the patient's comorbidities.
Collapse
Affiliation(s)
- Marcin Piorunek
- Veterinary Practice Marcin Piorunek, 60-185 Skórzewo, Poland
| | - Beata Brajer-Luftmann
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznań University of Medical Sciences, 60-569 Poznań, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznań University of Medical Sciences, 60-572 Poznań, Poland;
| |
Collapse
|