1
|
Gilje EA, Cho C. Multiple reactions during desensitization and predicting decreased efficacy of pegaspargase chemotherapy. Ann Allergy Asthma Immunol 2024; 133:219-220. [PMID: 38762055 DOI: 10.1016/j.anai.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Affiliation(s)
- Elizabeth A Gilje
- Department of Allergy and Immunology, Children's Hospital Colorado, Aurora, Colorado.
| | - Christine Cho
- Department of Allergy and Immunology, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
2
|
Sari NM, Berbudi A, Susanah S, Reniarti L, Supriyadi E, Kaspers GJL, Buddington RK, Howard S, Idjradinata P. Allergic Reactions to E. coli Asparaginase are Associated with Decreased Asparaginase Activity in an Indonesian Pediatric Population with ALL. Asian Pac J Cancer Prev 2023; 24:2773-2780. [PMID: 37642064 PMCID: PMC10685226 DOI: 10.31557/apjcp.2023.24.8.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The asparaginase's (ASP) utility for ALL treatment is limited by neutralizing antibodies, which is problematic in countries whose access limited to alternative preparations. ASP antibody levels and activity was measured during remission induction and associated with allergy manifestations. METHODS E. coli ASP was dosed at 7500 IU/m2. ASP IgG antibody levels were quantified at the beginning and end of induction. ASP activity was measured 24 hours after 1st and 5th dose (standard-risk) or 7th dose (high-risk patients) administration, and within 24 hours in case of allergic reactions. Allergy was monitored by CTCAE version 3. Parametric and non-parametric was performed for data analysis. RESULTS ASP antibody and activity levels were available in 41/63 consecutive patients. Allergic manifestations occurred in 13/41, with urticaria being the most frequent. There were no significant differences in subject characteristics based on allergic reactions. The 5th dose was the most frequent time of onset. Antibody levels in allergy group at the end of induction did not differ from those at baseline (p<0.05). Using a 24-hour level of 100 mU/mL as a threshold for adequate ASP activity, 6/13 patients with allergy had adequate levels compared to 26/28 patients without (p<0.05). The ASP activity level at the end of induction phase in both groups did not show a significant decrement. CONCLUSION The E. coli ASP activity with adequate levels were significantly higher in non-allergy group. Its activity level was not accompanied by increment of IgG in allergic group indicates other factors might affect activity levels in allergy group.
Collapse
Affiliation(s)
- Nur Melani Sari
- Hematology Oncology Division, Department of Child Health Faculty of Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia.
| | - Afiat Berbudi
- Department of Biomedical Science, Division of Parasitology, Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia.
| | - Susi Susanah
- Hematology Oncology Division, Department of Child Health Faculty of Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia.
| | - Lelani Reniarti
- Hematology Oncology Division, Department of Child Health Faculty of Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia.
| | - Eddy Supriyadi
- Pediatric Hematology Oncology Division, Department of Pediatrics, Dr Sardjito Hospital-Faculty of Medicine Universitas Gajah Mada,Yogyakarta, Indonesia.
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, pediatric oncology, The Netherlands.
| | - Randal K Buddington
- University of Tennesse, Health Science Centre, Memphis, United States of America.
| | - Scott Howard
- University of Tennesse, Health Science Centre, Memphis, United States of America.
| | - Ponpon Idjradinata
- Hematology Oncology Division, Department of Child Health Faculty of Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, Indonesia.
| |
Collapse
|
3
|
Chen WA, Chang DY, Chen BM, Lin YC, Barenholz Y, Roffler SR. Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines. ACS NANO 2023; 17:5757-5772. [PMID: 36926834 PMCID: PMC10062034 DOI: 10.1021/acsnano.2c12193] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 06/09/2023]
Abstract
Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.
Collapse
Affiliation(s)
- Wei-An Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Deng-Yuan Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Life Sciences, National Defense
Medical Center, Taipei 11529, Taiwan
| | - Yechezekel Barenholz
- Department
of Biochemistry, Faculty of Medicine, The
Hebrew University, Jerusalem 91120, Israel
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Ibrahim M, Ramadan E, Elsadek NE, Emam SE, Shimizu T, Ando H, Ishima Y, Elgarhy OH, Sarhan HA, Hussein AK, Ishida T. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J Control Release 2022; 351:215-230. [PMID: 36165835 DOI: 10.1016/j.jconrel.2022.09.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is widely used as an additive in foods and cosmetics, and as a carrier in PEGylated therapeutics. Even though PEG is thought to be less immunogenic, or perhaps even non-immunogenic, with a variety of physicochemical properties, there is mounting evidence that PEG causes immunogenic responses when conjugated with other materials such as proteins and nanocarriers. Under these conditions, PEG with other materials can result in the production of anti-PEG antibodies after administration. The antibodies that are induced seem to have a deleterious impact on the therapeutic efficacy of subsequently administered PEGylated formulations. In addition, hypersensitivity to PEGylated formulations could be a significant barrier to the utility of PEGylated products. Several reports have linked the presence of anti-PEG antibodies to incidences of complement activation-related pseudoallergy (CARPA) following the administration of PEGylated formulations. The use of COVID-19 mRNA vaccines, which are composed mainly of PEGylated lipid nanoparticles (LNPs), has recently gained wide acceptance, although many cases of post-vaccination hypersensitivity have been documented. Therefore, our review focuses not only on the importance of PEGs and its great role in improving the therapeutic efficacy of various medications, but also on the hypersensitivity reactions attributed to the use of PEGylated products that include PEG-based mRNA COVID-19 vaccines.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Omar Helmy Elgarhy
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
5
|
Kong YW, Dreaden EC. PEG: Will It Come Back to You? Polyethelyne Glycol Immunogenicity, COVID Vaccines, and the Case for New PEG Derivatives and Alternatives. Front Bioeng Biotechnol 2022; 10:879988. [PMID: 35573237 PMCID: PMC9092184 DOI: 10.3389/fbioe.2022.879988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yi Wen Kong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Yi Wen Kong, ; Erik C Dreaden, ,
| | - Erik C Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- *Correspondence: Yi Wen Kong, ; Erik C Dreaden, ,
| |
Collapse
|
6
|
Pagani M, Bavbek S, Alvarez‐Cuesta E, Berna Dursun A, Bonadonna P, Castells M, Cernadas J, Chiriac A, Sahar H, Madrigal‐Burgaleta R, Sanchez Sanchez S. Hypersensitivity reactions to chemotherapy: an EAACI Position Paper. Allergy 2022; 77:388-403. [PMID: 34587281 DOI: 10.1111/all.15113] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/30/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapeutic drugs have been widely used in the treatment of cancer disease for about 70 years. The development of new treatments has not hindered their use, and oncologists still prescribe them routinely, alone or in combination with other antineoplastic agents. However, all chemotherapeutic agents can induce hypersensitivity reactions (HSRs), with different incidences depending on the culprit drug. These reactions are the third leading cause of fatal drug-induced anaphylaxis in the United States. In Europe, deaths related to chemotherapy have also been reported. In particular, most reactions are caused by platinum compounds, taxanes, epipodophyllotoxins and asparaginase. Despite their prevalence and relevance, the ideal pathways for diagnosis, treatment and prevention of these reactions are still unclear, and practice remains considerably heterogeneous with vast differences from center to center. Thus, the European Network on Drug Allergy and Drug Allergy Interest Group of the European Academy of Allergy and Clinical Immunology organized a task force to provide data and recommendations regarding the allergological work-up in this field of drug hypersensitivity reactions. This position paper aims to provide consensus on the investigation of HSRs to chemotherapeutic drugs and give practical recommendations for clinicians that treat these patients, such as oncologists, allergologists and internists. Key sections cover risk factors, pathogenesis, symptoms, the role of skin tests, in vitro tests, indications and contraindications of drug provocation tests and desensitization of neoplastic patients with allergic reactions to chemotherapeutic drugs. Statements, recommendations and unmet needs were discussed and proposed at the end of each section.
Collapse
Affiliation(s)
- Mauro Pagani
- Department of Medicine Medicine Ward C. Poma Mantova HospitalASST Mantova Mantova Italy
| | - Sevim Bavbek
- Division of Immunology and Allergy Department of Chest Diseases Ankara University School of Medicine Ankara Turkey
| | | | - Adile Berna Dursun
- Department of Immunology and Allergic Diseases Recep Tayyip Erdoğan University Rize Turkey
| | | | - Mariana Castells
- Division of Rheumatology, Immunology and Allergy Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston Massachusetts USA
| | - Josefina Cernadas
- Department of Allergy and Clinical Immunology Medical University, H. S. Joao Porto Portugal
| | - Anca Chiriac
- Division of Allergy Department of Pulmonology Hôpital Arnaud de VilleneuveUniversity Hospital of Montpellier Montpellier France
| | - Hamadi Sahar
- The Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts USA
| | - Ricardo Madrigal‐Burgaleta
- Allergy & Severe Asthma Service St Bartholomew's Hospital'sBarts Health NHS Trust London UK
- Drug Desensitisation Centre Catalan Institute of Oncology (ICO) Bellvitge University Hospital Barcelona Spain
| | - Soledad Sanchez Sanchez
- Division of Allergy & Clinical Immunology Department of Medicine University Hospital Complex of A Coruna A Coruna Spain
| |
Collapse
|
7
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
8
|
Busack KR. Pegaspargase: Two Pediatric Case Studies of Delayed Urticaria Preceding Anaphylactic Reactions Postadministration. Clin J Oncol Nurs 2021; 25:511-513. [PMID: 34533506 DOI: 10.1188/21.cjon.511-513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pegaspargase, a chemotherapy drug known to improve survival outcomes in acute lymphoblastic leukemia, is associated with a risk for hypersensitivity reactions. At a children's hospital in the midwestern United States, two patients developed unusual reactions consisting of disseminated urticaria about two weeks after their second dose of pegaspargase. Both patients then proceeded to have severe anaphylaxis with the third dose of pegaspargase. These cases highlight the importance of advanced practice nurses being alert for the occurrence of unusual and delayed reactions to chemotherapy administration.
Collapse
|
9
|
Chen BM, Cheng TL, Roffler SR. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS NANO 2021; 15:14022-14048. [PMID: 34469112 DOI: 10.1021/acsnano.1c05922] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tian-Lu Cheng
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
McCormick M, Lapinski J, Friehling E, Smith K. Premedication prior to PEG-asparaginase is cost-effective in pediatric patients with acute lymphoblastic leukemia. Pediatr Blood Cancer 2021; 68:e29051. [PMID: 33860989 DOI: 10.1002/pbc.29051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND PEG-asparaginase is critical in pediatric acute lymphoblastic leukemia (ALL) therapy but is highly immunogenic. Severe allergic reactions lead to substitution of further PEG-asparaginase with Erwinia. Erwinia is associated with more frequent dosing, increased expense, and limited availability. Premedication may reduce rates of allergic reactions. PROCEDURES This Markov model evaluated the cost-effectiveness of three strategies: premedication plus therapeutic drug monitoring (TDM), TDM alone, and no premedication or TDM. We modeled two scenarios: a standard-risk (SR) B-ALL patient receiving two asparaginase doses and a high-risk (HR) patient receiving seven asparaginase doses. The model incorporated costs of asparaginase, premedication, TDM and clinic visits, and lost parental wages associated with each additional Erwinia dose. We incorporated a five-year time horizon with a societal perspective. Outcomes were Erwinia substitutions avoided and differences in quality-adjusted life years (QALYs). Probabilistic and one-way sensitivity analyses evaluated model uncertainty. RESULTS In both scenarios, premedication was the least costly strategy. In SR and HR scenarios, premedication with monitoring resulted in 8% and 7% fewer changes to Erwinia compared with monitoring alone and 3% and 2% fewer changes compared with no premedication/monitoring, respectively. Premedication resulted in the most QALYs gained in the SR patients. Individual variation of model inputs did not change premedication/monitoring favorability for either scenario. In probabilistic sensitivity analyses, premedication/monitoring was favored in >87% of iterations in both scenarios. CONCLUSION Compared with other strategies, premedication use and asparaginase level monitoring in children with B-ALL is potentially cost-saving.
Collapse
Affiliation(s)
| | - Jillian Lapinski
- C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
11
|
Fertal SA, Bradeen HA, Friesen E, Heath JL. Time Course and Management of Protracted Anaphylaxis Due to PEG-Asparaginase. J Pediatr Hematol Oncol 2021; 43:e385-e387. [PMID: 32815880 DOI: 10.1097/mph.0000000000001906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/17/2020] [Indexed: 11/26/2022]
Abstract
Polyethylene glycosylated (PEG)-asparaginase is a cornerstone of treatment for acute lymphoblastic leukemia (ALL), and effective administration is associated with better outcomes. PEG-asparaginase is associated with a uniphasic hypersensitivity reaction in ∼10% to 20% of patients. We present a 17-year-old male individual diagnosed with very high-risk pre-B-ALL, who experienced protracted anaphylaxis 1 hour following administration of his second PEG-asparaginase dose. This type of allergic reaction has yet to be described in ALL patients treated with PEG-asparaginase. Here, we outline the time course and successful management of protracted anaphylaxis in an ALL patient.
Collapse
Affiliation(s)
| | | | | | - Jessica L Heath
- Department of Pediatrics, University of Vermont
- University of Vermont Cancer Center, Burlington, VT
| |
Collapse
|
12
|
|
13
|
Kozma GT, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev 2020; 154-155:163-175. [PMID: 32745496 DOI: 10.1016/j.addr.2020.07.024] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Conjugation of polyethylene glycols (PEGs) to proteins or drug delivery nanosystems is a widely accepted method to increase the therapeutic index of complex nano-biopharmaceuticals. Nevertheless, these drugs and agents are often immunogenic, triggering the rise of anti-drug antibodies (ADAs). Among these ADAs, anti-PEG IgG and IgM were shown to account for efficacy loss due to accelerated blood clearance of the drug (ABC phenomenon) and hypersensitivity reactions (HSRs) entailing severe allergic symptoms with occasionally fatal anaphylaxis. In addition to recapitulating the basic information on PEG and its applications, this review expands on the physicochemical factors influencing its immunogenicity, the prevalence, features, mechanism of formation and detection of anti-PEG IgG and IgM and the mechanisms by which these antibodies (Abs) induce ABC and HSRs. In particular, we highlight the in vitro, animal and human data attesting to anti-PEG Ab-induced complement (C) activation as common underlying cause of both adverse effects. A main message is that correct measurement of anti-PEG Abs and individual proneness for C activation might predict the rise of adverse immune reactions to PEGylated drugs and thereby increase their efficacy and safety.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University Medical School, Budapest, Hungary; SeroScience Ltd, Budapest, Hungary
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University Medical School, Budapest, Hungary; SeroScience Ltd, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary.
| |
Collapse
|
14
|
Liu Y, Smith CA, Panetta JC, Yang W, Thompson LE, Counts JP, Molinelli AR, Pei D, Kornegay NM, Crews KR, Swanson H, Cheng C, Karol SE, Evans WE, Inaba H, Pui CH, Jeha S, Relling MV. Antibodies Predict Pegaspargase Allergic Reactions and Failure of Rechallenge. J Clin Oncol 2019; 37:2051-2061. [PMID: 31188727 PMCID: PMC6804844 DOI: 10.1200/jco.18.02439] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Pegaspargase (PEG-ASP) has largely replaced native Escherichia coli asparaginase (L-ASP) in the treatment of acute lymphoblastic leukemia because of its longer half-life and lower immunogenicity. Risk factors for allergic reactions to PEG-ASP remain unclear. Here, we identify risk factors for reactions in a front-line acute lymphoblastic leukemia trial and assess the usefulness of serum antibodies for diagnosing allergy and predicting rechallenge outcome. PATIENTS AND METHODS PEG-ASP was administered to 598 patients in St Jude's Total XVI study. Results were compared with Total XV study (ClinicalTrials.gov identifiers: NCT00549848 and NCT00137111), which used native L-ASP. Serum samples (n = 5,369) were analyzed for anti-PEG-ASP immunoglobulin G by enzyme-linked immunosorbent assay. Positive samples were tested for anti-polyethylene glycol (PEG) and anti-L-ASP. We analyzed potential risk factors for reactions and associations between antibodies and reactions, rechallenge outcomes, and PEG-ASP pharmacokinetics. RESULTS Grade 2 to 4 reactions were less common in the Total XVI study with PEG-ASP (81 [13.5%] of 598) than in the Total XV study with L-ASP (169 [41.2%] of 410; P = 1.4 × 10-23). For Total XVI, anti-PEG, not anti-L-ASP, was the predominant component of anti-PEG-ASP antibodies (96%). In a multivariable analysis, more intrathecal therapy (IT) predicted fewer reactions (P = 2.4 × 10-5), which is consistent with an immunosuppressant contribution of IT. Anti-PEG-ASP was associated with accelerated drug clearance (P = 5.0 × 10-6). Failure of rechallenge after initial reactions was associated with anti-PEG-ASP (P = .0078) and was predicted by the occurrence of angioedema with first reaction (P = .01). CONCLUSION Less IT therapy was the only independent clinical risk factor for reactions to PEG-ASP. PEG, and not L-ASP, is the major antigen that causes allergic reactions. Anti-PEG-ASP has utility in predicting and confirming clinical reactions to PEG-ASP as well as in identifying patients who are most likely to experience failure with rechallenge.
Collapse
Affiliation(s)
- Yiwei Liu
- St Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Wenjian Yang
- St Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | - Deqing Pei
- St Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Hope Swanson
- St Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- St Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Hiroto Inaba
- St Jude Children’s Research Hospital, Memphis, TN
| | | | - Sima Jeha
- St Jude Children’s Research Hospital, Memphis, TN
| | | |
Collapse
|