1
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Park JJ, Rochlin DH, Parsaei Y, Shetye PR, Witek L, Leucht P, Rabbani PS, Flores RL. Bone Tissue Engineering Strategies for Alveolar Cleft: Review of Preclinical Results and Guidelines for Future Studies. Cleft Palate Craniofac J 2023; 60:1450-1461. [PMID: 35678607 DOI: 10.1177/10556656221104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current standard of care for an alveolar cleft defect is an autogenous bone graft, typically from the iliac crest. Given the limitations of alveolar bone graft surgery, such as limited supply, donor site morbidity, graft failure, and need for secondary surgery, there has been growing interest in regenerative medicine strategies to supplement and replace traditional alveolar bone grafts. Though there have been preliminary clinical studies investigating bone tissue engineering methods in human subjects, lack of consistent results as well as limitations in study design make it difficult to determine the efficacy of these interventions. As the field of bone tissue engineering is rapidly advancing, reconstructive surgeons should be aware of the preclinical studies informing these regenerative strategies. We review preclinical studies investigating bone tissue engineering strategies in large animal maxillary or mandibular defects and provide an overview of scaffolds, stem cells, and osteogenic agents applicable to tissue engineering of the alveolar cleft. An electronic search conducted in the PubMed database up to December 2021 resulted in 35 studies for inclusion in our review. Most studies showed increased bone growth with a tissue engineering construct compared to negative control. However, heterogeneity in the length of follow up, method of bone growth analysis, and inconsistent use of positive control groups make comparisons across studies difficult. Future studies should incorporate a pediatric study model specific to alveolar cleft with long-term follow up to fully characterize volumetric defect filling, cellular ingrowth, bone strength, tooth movement, and implant support.
Collapse
Affiliation(s)
- Jenn J Park
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Danielle H Rochlin
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Yassmin Parsaei
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Pradip R Shetye
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Lukasz Witek
- New York University College of Dentistry, New York, NY, USA
| | - Philipp Leucht
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| |
Collapse
|
3
|
Sanjaya GPH, Maliawan S. Chitosan as Bone Scaffold for Craniofacial Bone Regeneration: A Systematic Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The reconstruction of bone defect in the face and head is indispensable yet one of the most challenging procedure to date. Chitosan has emerged as a promising low-cost natural biopolymer for the bone scaffold as an alternative to surgery. This study aims to review the effectiveness of chitosan as a bone scaffold for craniofacial bone regeneration.
Methods: This systematic review used Google Scholar and PubMed as database sources. Study selection using PRISMA diagram and Boolean operator to specify the study search. The quality assessment of the study used a checklist from Joanna Briggs Institute for experimental study.
Result: We included 18 experimental studies, both in vivo and in vitro study—the in vivo study used animal subjects such as mice, goats and rabbits. The studies mostly used chitosan combined with other biomaterials such as demineralized bone matrix (DBM), genipin (GP), sodium alginate (SA), resveratrol (Res), polycaprolactone (PCL) and collagen, growth factor and stem cells such as bone morphogenic protein-2 (BMP-2), dental pulp stem cell (DPSC), and human umbilical cord mesenchymal stem cells (hUCMSC).
Conclusion: Chitosan is a natural polymer with promising osteoconductive, osteoinductive and osteo-integrative effects in bone regeneration. Chitosan utilization for bone scaffolds combined with other biomaterials, growth factors, or stem cells gives better bone regeneration results than chitosan alone.
Collapse
|
4
|
Dias IE, Viegas CA, Requicha JF, Saavedra MJ, Azevedo JM, Carvalho PP, Dias IR. Mesenchymal Stem Cell Studies in the Goat Model for Biomedical Research-A Review of the Scientific Literature. BIOLOGY 2022; 11:1276. [PMID: 36138755 PMCID: PMC9495984 DOI: 10.3390/biology11091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, defined by their ability to self-renew, while maintaining the capacity to differentiate into different cellular lineages, presumably from their own germinal layer. MSCs therapy is based on its anti-inflammatory, immunomodulatory, and regenerative potential. Firstly, they can differentiate into the target cell type, allowing them to regenerate the damaged area. Secondly, they have a great immunomodulatory capacity through paracrine effects (by secreting several cytokines and growth factors to adjacent cells) and by cell-to-cell contact, leading to vascularization, cellular proliferation in wounded tissues, and reducing inflammation. Currently, MSCs are being widely investigated for numerous tissue engineering and regenerative medicine applications. Appropriate animal models are crucial for the development and evaluation of regenerative medicine-based treatments and eventual treatments for debilitating diseases with the hope of application in upcoming human clinical trials. Here, we summarize the latest research focused on studying the biological and therapeutic potential of MSCs in the goat model, namely in the fields of orthopedics, dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology fields.
Collapse
Affiliation(s)
- Inês E. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Carlos A. Viegas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - João F. Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Maria J. Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge M. Azevedo
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Department of Animal Science, ECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro P. Carvalho
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy—Research and Development in Biotechnology, 3020-210 Coimbra, Portugal
| | - Isabel R. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|