1
|
Fernando JJ, Biswas R, Biswas L. Non-invasive molecular biomarkers for monitoring solid organ transplantation: A comprehensive overview. Int J Immunogenet 2024; 51:47-62. [PMID: 38200592 DOI: 10.1111/iji.12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Solid organ transplantation is a life-saving intervention for individuals with end-stage organ failure. Despite the effectiveness of immunosuppressive therapy, the risk of graft rejection persists in all viable transplants between individuals. The risk of rejection may vary depending on the degree of compatibility between the donor and recipient for both human leucocyte antigen (HLA) and non-HLA gene-encoded products. Monitoring the status of the allograft is a critical aspect of post-transplant management, with invasive biopsies being the standard of care for detecting rejection. Non-invasive biomarkers are increasingly being recognized as valuable tools for aiding in the detection of graft rejection, monitoring graft status and evaluating the efficacy of immunosuppressive therapy. Here, we focus on the importance of molecular biomarkers in solid organ transplantation and their potential role in clinical practice. Conventional molecular biomarkers used in transplantation include HLA typing, detection of anti-HLA antibodies, killer cell immunoglobulin-like receptor genotypes, and anti-MHC class 1-related chain A antibodies, which are important for assessing the compatibility of the donor and recipient. Emerging molecular biomarkers include the detection of donor-derived cell-free DNA, microRNAs (regulation of gene expression), exosomes (small vesicles secreted by cells), and kidney solid organ response test, in the recipient's blood for early signs of rejection. This review highlights the strengths and limitations of these molecular biomarkers and their potential role in improving transplant outcomes.
Collapse
Affiliation(s)
- Jeffy J Fernando
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
2
|
Ju C, Wang L, Xu P, Wang X, Xiang D, Xu Y, Xu X, Chen R, He J. Differentiation between lung allograft rejection and infection using donor-derived cell-free DNA and pathogen detection by metagenomic next-generation sequencing. Heliyon 2023; 9:e22274. [PMID: 38053854 PMCID: PMC10694331 DOI: 10.1016/j.heliyon.2023.e22274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Background In lung transplant recipients (LTRs), the primary causes of mortality are rejection and infection, which often present similar symptoms, making differentiation challenging. This study aimed to explore the diagnostic efficacy of plasma donor-derived cell-free DNA (dd-cfDNA) in conjunction with metagenomic next-generation sequencing (mNGS) for pathogen detection in differentiation between lung allograft rejection and infection in LTRs experiencing new-onset pulmonary complications. Methods We conducted a retrospective study on 188 LTRs who underwent lung or heart-lung transplantation at our institution from 2015 to 2021. The LTRs were categorized into three groups: stable, rejection, and infection. We measured plasma dd-cfDNA levels and utilized both mNGS and culture methods to identify pathogens in the bronchoalveolar lavage fluid (BALF). Results The rejection group exhibited the highest levels of plasma dd-cfDNA (median 1.34 %, interquartile range [IQR] 1.06-2.19 %) compared to the infection group (median 0.72 %, IQR 0.62-1.07 %) and the stable group (median 0.69 %, IQR 0.58-0.78 %) (both p < 0.001). Within the infection group, a significantly higher level of dd-cfDNA was observed in the cytomegalovirus infection subgroup (p < 0.001), but not in the fungal (p > 0.05) or bacterial infection subgroups (p > 0.05), when compared to the stable group. Elevated dd-cfDNA levels, in combination with negative mNGS results, strongly indicated lung allograft rejection, with a positive predictive value and negative predictive value of 88.7 % and 99.2 %, respectively. Conclusions Plasma dd-cfDNA in combination with BALF pathogen detection by mNGS shows satisfactory accuracy in differentiating lung allograft rejection from infectious complications.
Collapse
Affiliation(s)
- Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lulin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peihang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Khilnani GC, Tiwari P, Zirpe KG, Chaudhry D, Govil D, Dixit S, Kulkarni AP, Todi SK, Hadda V, Jain N, Govindagoudar MB, Samavedam S, Jha SK, Tyagi N, Jaju MR, Sharma A. Guidelines for the Use of Procalcitonin for Rational Use of Antibiotics. Indian J Crit Care Med 2022; 26:S77-S94. [PMID: 36896360 PMCID: PMC9989870 DOI: 10.5005/jp-journals-10071-24326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Zirpe KG, Chaudhary D, Govil D, Dixit S, et al. Guidelines for the Use of Procalcitonin for Rational Use of Antibiotics. Indian J Crit Care Med 2022;26(S2):S77-S94.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary Medicine, School of Excellence in Pulmonary Medicine, Netaji Subhash Chandra Bose Medical College, Jabalpur, Madhya Pradesh, India
| | | | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Deepak Govil
- Institute of Critical Care and Anesthesia, Medanta - The Medicty, Gurugram, Haryana, India
| | - Subhal Dixit
- Department of Critical Care Medicine, Sanjeevan Surgery Hospital, Pune, Maharashtra, India; Department of Critical Care Medicine, MJM Hospital, Pune, Maharashtra, India
| | - Atul Prabhakar Kulkarni
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | | - Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Neetu Jain
- Department of Pulmonary Medicine, Critical Care and Sleep Disorders, Pushpawati Singhania Hospital & Research Institute, New Delhi, India
| | | | - Srinivas Samavedam
- Department of Critical Care Management, Virinchi Hospital, Hyderabad, Telangana, India
| | | | - Niraj Tyagi
- Department of Institute of Critical Care Medicine, Sir Ganga Ram Hospital, New Delhi, India
| | - Madhusudan R Jaju
- Critical Care Medicine Sunshine Hospital, Gachibowli, Hyderabad, India
| | - Anita Sharma
- Department of Lab Medicine, Fortes Hospital, Mohali, Punjab, India
| |
Collapse
|
4
|
Abstract
Infection and rejection are the two most common complications after lung transplantation (LT) and are associated with increased morbidity and mortality. We aimed to examine the association between the airway microbiota and infection and rejection in lung transplant recipients (LTRs). Here, we collected 181 sputum samples (event-free, n = 47; infection, n = 103; rejection, n = 31) from 59 LTRs, and performed 16S rRNA gene sequencing to analyze the airway microbiota. A significantly different airway microbiota was observed among event-free, infection and rejection recipients, including microbial diversity and community composition. Nineteen differential taxa were identified by linear discriminant analysis (LDA) effect size (LEfSe), with 6 bacterial genera, Actinomyces, Rothia, Abiotrophia, Neisseria, Prevotella, and Leptotrichia enriched in LTRs with rejection. Random forest analyses indicated that the combination of the 6 genera and procalcitonin (PCT) and T-lymphocyte levels showed area under the curve (AUC) values of 0.898, 0.919 and 0.895 to differentiate between event-free and infection recipients, event-free and rejection recipients, and infection and rejection recipients, respectively. In conclusion, our study compared the airway microbiota between LTRs with infection and acute rejection. The airway microbiota, especially combined with PCT and T-lymphocyte levels, showed satisfactory predictive efficiency in discriminating among clinically stable recipients and those with infection and acute rejection, suggesting that the airway microbiota can be a potential indicator to differentiate between infection and acute rejection after LT. IMPORTANCE Survival after LT is limited compared with other solid organ transplantations mainly due to infection- and rejection-related complications. Differentiating infection from rejection is one of the most important challenges to face after LT. Recently, the airway microbiota has been reported to be associated with either infection or rejection of LTRs. However, fewer studies have investigated the relationship between airway microbiota together with infection and rejection of LTRs. Here, we conducted an airway microbial study of LTRs and analyzed the airway microbiota together with infection, acute rejection, and clinically stable recipients. We found different airway microbiota between infection and acute rejection and identify several genera associated with each outcome and constructed a model that incorporates airway microbiota and clinical parameters to predict outcome. This study highlighted that the airway microbiota was a potential indicator to differentiate between infection and acute rejection after LT.
Collapse
|
5
|
Renaud-Picard B, Koutsokera A, Cabanero M, Martinu T. Acute Rejection in the Modern Lung Transplant Era. Semin Respir Crit Care Med 2021; 42:411-427. [PMID: 34030203 DOI: 10.1055/s-0041-1729542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute cellular rejection (ACR) remains a common complication after lung transplantation. Mortality directly related to ACR is low and most patients respond to first-line immunosuppressive treatment. However, a subset of patients may develop refractory or recurrent ACR leading to an accelerated lung function decline and ultimately chronic lung allograft dysfunction. Infectious complications associated with the intensification of immunosuppression can also negatively impact long-term survival. In this review, we summarize the most recent evidence on the mechanisms, risk factors, diagnosis, treatment, and prognosis of ACR. We specifically focus on novel, promising biomarkers which are under investigation for their potential to improve the diagnostic performance of transbronchial biopsies. Finally, for each topic, we highlight current gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Benjamin Renaud-Picard
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| | - Angela Koutsokera
- Division of Pulmonology, Lung Transplant Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Cabanero
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| |
Collapse
|
6
|
Tejada S, Campogiani L, Mazo C, Romero A, Peña Y, Pont T, Gómez A, Román A, Rello J. Acute respiratory failure among lung transplant adults requiring intensive care: Changing spectrum of causative organisms and impact of procalcitonin test in the diagnostic workup. Transpl Infect Dis 2020; 22:e13346. [PMID: 32473604 DOI: 10.1111/tid.13346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim was to identify the causing organisms and assess the association of procalcitonin (PCT) with bacterial pneumonia within 24 hours of intensive care unit admission (ICU-A) among lung transplant (LT) adult recipients. METHODS Secondary analysis from a prospective cohort study. All LT adults admitted to ICU for acute respiratory failure (ARF) over 5 years were included. Patients were followed until hospital discharge or death. RESULTS Fifty-eight consecutive LT patients were enrolled. The most important cause of ICU-A due to ARF was pneumonia 29 (50%) followed by acute rejection 3 (5.2%) and bronchiolitis obliterans syndrome exacerbation 3 (5.2%). Microorganisms were isolated from 22/29 cases with pneumonia (75.9%): 17 (77.2%) bacterial, 4 (18.2%) viral, 1 (4.5%) Aspergillus fumigates, with Pseudomonas aeruginosa being the most common cause (45.5%) of pneumonia, with 10 patients presenting chronic colonization by P aeruginosa. Median [Interquartile range (IQR)] PCT levels within 24 hours after admission were higher in pneumonia (1.5 µg/L; IQR:0.3-22.0), than in non-pneumonia cases (0.2 µg/L; IQR:0.1-0.7) (P = .019) and PCT levels within 24 hours helped to discriminate bacterial pneumonia (8.2 µg/L; IQR:0.2-43.0) from viral pneumonia and non-pneumonia cases (0.2 µg/L; IQR:0.1-0.7). The overall negative predictive value for bacterial pneumonia was 85.1%, increasing to 91.6% among episodes after 6 months of LT. CONCLUSIONS Causes of severe pneumonia in LT are changing, with predominant role of P aeruginosa and respiratory viruses. PCT ≤ 0.5 μg/L within 24 hours helps to exclude bacterial pneumonia diagnosis in LT adults requiring ICU-A. A negative PCT test allows antimicrobial de-escalation and requires an alternative diagnostic to bacterial pneumonia.
Collapse
Affiliation(s)
- Sofia Tejada
- CIBER de Enfermedades Respiratorias (CIBERES), Instituo Salud Carlos III, Madrid, Spain.,Clinical Research/Epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
| | - Laura Campogiani
- Clinical Infectious Diseases, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Cristopher Mazo
- CIBER de Enfermedades Respiratorias (CIBERES), Instituo Salud Carlos III, Madrid, Spain.,Clinical Research/Epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Department of Donor & Transplant Coordination, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anabel Romero
- ONCOBELL Program - Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Yolanda Peña
- CIBER de Enfermedades Respiratorias (CIBERES), Instituo Salud Carlos III, Madrid, Spain.,Clinical Research/Epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
| | - Teresa Pont
- Clinical Research/Epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Department of Donor & Transplant Coordination, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Aroa Gómez
- Department of Donor & Transplant Coordination, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Antonio Román
- Respiratory Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jordi Rello
- CIBER de Enfermedades Respiratorias (CIBERES), Instituo Salud Carlos III, Madrid, Spain.,Clinical Research/Epidemiology In Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Anesthesia Department, Clinical Research in the ICU, CHU Nimes, Universite de Nimes-Montpellier, Nimes, France
| |
Collapse
|
7
|
Abstract
Primary graft dysfunction (PGD) remains the leading cause of early mortality post-heart transplantation. Despite improvements in mechanical circulatory support and critical care measures, the rate of PGD remains significant. A recent consensus statement by the International Society of Heart and Lung Transplantation (ISHLT) has formulated a definition for PGD. Five years on, we look at current concepts and future directions of PGD in the current era of transplantation.
Collapse
Affiliation(s)
- Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland.
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland.
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland.
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
| | - Colin Berry
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
8
|
Suberviola B, Rellan L, Riera J, Iranzo R, Garcia Campos A, Robles JC, Vicente R, Miñambres E, Santibanez M. Role of biomarkers in early infectious complications after lung transplantation. PLoS One 2017; 12:e0180202. [PMID: 28704503 PMCID: PMC5509107 DOI: 10.1371/journal.pone.0180202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
Background Infections and primary graft dysfunction are devastating complications in the immediate postoperative period following lung transplantation. Nowadays, reliable diagnostic tools are not available. Biomarkers could improve early infection diagnosis. Methods Multicentre prospective observational study that included all centres authorized to perform lung transplantation in Spain. Lung infection and/or primary graft dysfunction presentation during study period (first postoperative week) was determined. Biomarkers were measured on ICU admission and daily till ICU discharge or for the following 6 consecutive postoperative days. Results We included 233 patients. Median PCT levels were significantly lower in patients with no infection than in patients with Infection on all follow up days. PCT levels were similar for PGD grades 1 and 2 and increased significantly in grade 3. CRP levels were similar in all groups, and no significant differences were observed at any study time point. In the absence of PGD grade 3, PCT levels above median (0.50 ng/ml on admission or 1.17 ng/ml on day 1) were significantly associated with more than two- and three-fold increase in the risk of infection (adjusted Odds Ratio 2.37, 95% confidence interval 1.06 to 5.30 and 3.44, 95% confidence interval 1.52 to 7.78, respectively). Conclusions In the absence of severe primary graft dysfunction, procalcitonin can be useful in detecting infections during the first postoperative week. PGD grade 3 significantly increases PCT levels and interferes with the capacity of PCT as a marker of infection. PCT was superior to CRP in the diagnosis of infection during the study period.
Collapse
Affiliation(s)
- Borja Suberviola
- Critical Care Department, Hospital Universitario Marqués de Valdecilla – IDIVAL, Santander, Spain
- * E-mail:
| | - Luzdivina Rellan
- Department of Anesthesiology, Complexo Hospitalario Universitario A Coruna, A Coruna, Spain
| | - Jordi Riera
- Critical Care Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Reyes Iranzo
- Department of Anesthesiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Juan Carlos Robles
- Transplant Coordination Unit, Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Rosario Vicente
- Department of Anesthesiology, Hospital Universitario y Politécnico de La Fe, Valencia, Spain
| | - Eduardo Miñambres
- Critical Care Department - Transplant Coordination Unit, Hospital Universitario Marques de Valdecilla – IDIVAL, Santander, Spain
| | | |
Collapse
|
9
|
Sato A, Kaido T, Iida T, Yagi S, Hata K, Okajima H, Takakura S, Ichiyama S, Uemoto S. Bundled strategies against infection after liver transplantation: Lessons from multidrug-resistant Pseudomonas aeruginosa. Liver Transpl 2016; 22:436-45. [PMID: 26824429 DOI: 10.1002/lt.24407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/24/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Infection is a life-threatening complication after liver transplantation (LT). A recent outbreak of multidrug-resistant Pseudomonas aeruginosa triggered changes in our infection control measures. This study investigated the usefulness of our bundled interventions against postoperative infection after LT. This before-and-after analysis enrolled 130 patients who underwent living donor or deceased donor LT between January 2011 and October 2014. We initiated 3 measures after January 2013: (1) we required LT candidates to be able to walk independently; (2) we increased the hand hygiene compliance rate and contact precautions; and (3) we introduced procalcitonin (PCT) measurement for a more precise determination of empirical antimicrobial treatment. We compared factors affecting the emergence of drug-resistant microorganisms, such as the duration of antimicrobial and carbapenem therapy and hospital stay, and outcomes such as bacteremia and death from infection between before (n = 77) and after (n = 53) the LT suspension period. The utility of PCT measurement was also evaluated. Patients' backgrounds were not significantly different before and after the protocol revision. Incidence of bacteremia (44% versus 25%; P = 0.02), detection rate of multiple bacteria (18% versus 4%; P = 0.01), and deaths from infections (12% versus 2%; P = 0.04) significantly decreased after the protocol revision. Duration of antibiotic (42.3 versus 25.1 days; P = 0.002) and carbapenem administration (15.1 versus 5.2 days; P < 0.001) and the length of postoperative hospital stay (85.4 versus 63.5 days; P = 0.048) also decreased after the protocol revision. PCT mean values were significantly higher in the bacteremia group (10.10 ng/mL), compared with the uneventful group (0.65 ng/mL; P = 0.002) and rejection group (2.30 ng/mL; P = 0.02). One-year overall survival after LT significantly increased in the latter period (71% versus 94%; P = 0.001). In conclusion, the bundled interventions were useful in preventing infections and lengthening overall survival after LT.
Collapse
Affiliation(s)
- Asahi Sato
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| | - Toshimi Kaido
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| | - Taku Iida
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Hata
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Okajima
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| | - Shunji Takakura
- Department of Infection Control and Prevention, Kyoto University, Kyoto, Japan
| | - Satoshi Ichiyama
- Department of Infection Control and Prevention, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|