1
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
2
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
3
|
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Mar Drugs 2021; 19:365. [PMID: 34201951 PMCID: PMC8304352 DOI: 10.3390/md19070365] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, VA 23185, USA; (S.V.J.); (E.M.M.); (S.E.R.); (M.C.C.)
| |
Collapse
|
4
|
Sharun K, Shyamkumar TS, Aneesha VA, Dhama K, Pawde AM, Pal A. Current therapeutic applications and pharmacokinetic modulations of ivermectin. Vet World 2019; 12:1204-1211. [PMID: 31641298 PMCID: PMC6755388 DOI: 10.14202/vetworld.2019.1204-1211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Ivermectin is considered to be a wonder drug due to its broad-spectrum antiparasitic activity against both ectoparasites and endoparasites (under class of endectocide) and has multiple applications in both veterinary and human medicine. In particular, ivermectin is commonly used in the treatment of different kinds of infections and infestations. By altering the vehicles used in the formulations, the pharmacokinetic properties of different ivermectin preparations can be altered. Since its development, various vehicles have been evaluated to assess the efficacy, safety, and therapeutic systemic concentrations of ivermectin in different species. A subcutaneous route of administration is preferred over a topical or an oral route for ivermectin due to superior bioavailability. Different formulations of ivermectin have been developed over the years, such as stabilized aqueous formulations, osmotic pumps, controlled release capsules, silicone carriers, zein microspheres, biodegradable microparticulate drug delivery systems, lipid nanocapsules, solid lipid nanoparticles, sustained-release ivermectin varnish, sustained-release ivermectin-loaded solid dispersion suspension, and biodegradable subcutaneous implants. However, several reports of ivermectin resistance have been identified in different parts of the world over the past few years. Continuous use of suboptimal formulations or sub-therapeutic plasma concentrations may predispose an individual to resistance toward ivermectin. The current research trend is focused toward the need for developing ivermectin formulations that are stable, effective, and safe and that reduce the number of doses required for complete clinical cure in different parasitic diseases. Therefore, single-dose long-acting preparations of ivermectin that provide effective therapeutic drug concentrations need to be developed and commercialized, which may revolutionize drug therapy and prophylaxis against various parasitic diseases in the near future. The present review highlights the current advances in pharmacokinetic modulation of ivermectin formulations and their potent therapeutic applications, issues related to emergence of ivermectin resistance, and future trends of ivermectin usage.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - T. S. Shyamkumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - V. A. Aneesha
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Abhijit Motiram Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
5
|
Mahdy MAK, Abdul-Ghani R, Abdulrahman TAA, Al-Eryani SMA, Al-Mekhlafi AM, Alhaidari SAA, Azazy AA. Onchocerca volvulus infection in Tihama region - west of Yemen: Continuing transmission in ivermectin-targeted endemic foci and unveiled endemicity in districts with previously unknown status. PLoS Negl Trop Dis 2018; 12:e0006329. [PMID: 29505580 PMCID: PMC5854432 DOI: 10.1371/journal.pntd.0006329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/15/2018] [Accepted: 02/20/2018] [Indexed: 11/29/2022] Open
Abstract
Background Onchocerciasis in Yemen is one of the most neglected diseases, where baseline estimates of onchocerciasis and monitoring of the impact of ivermectin regularly administered to the affected individuals on its transmission are lacking. Therefore, this study aimed to determine the anti-Ov16 IgG4 seroprevalence among local communities of Hodeidah and Al-Mahwit governorates of Tihama region. The factors possibly associated with previous exposure to infection were also studied. Methodology/Principal findings This cross-sectional study was conducted in two ivermectin-targeted districts endemic for onchocerciasis in Hodeidah and Al-Mahwit and two untargeted districts with unknown previous endemicity in Hodeidah between February and July 2017. For 508 residents sampled by a multi-stage random approach, data were collected and blood specimens were screened for anti-Ov16 IgG4 using the SD BIOLINE Onchocerciasis IgG4 rapid tests. The study revealed an overall anti-Ov16 IgG4 rate of 18.5% (94/508) in all surveyed districts, with 10.2% (12/118) of children aged ≤10 years being seropositive. Moreover, rates of 8.0% (4/50) and 6.1% (4/66) were found in districts not officially listed as endemic for the disease. Multivariable analysis confirmed the age of more than ten years and residing within a large family as the independent predictors of exposure to infection. Conclusions/Significance Onchocerciasis transmission is still ongoing as supported by the higher anti-Ov16 IgG4 seroprevalence rate among children aged ≤10 years compared to that (<0.1%) previously set by the World Health Organization as a serologic criterion for transmission interruption. Further large-scale studies combining serologic and entomologic criteria are recommended for the mapping of O. volvulus in human and blackfly populations in endemic foci and their neighboring areas of uncertain endemicity. In addition, ivermectin distribution, coverage and impact on disease transmission need to be continually assessed. Onchocerciasis is endemic in certain foci in the western governorates of Yemen. Monitoring the impact of the regular ivermectin administration to affected individuals on the transmission status and providing baseline onchocerciasis estimates in endemic areas are crucial for planning effective elimination strategies. We found that the disease transmission is still ongoing in Hodeidah and Al-Mahwit governorates of Tihama region as indicated by the anti-Ov16 IgG4 seropositivity among children aged ≤10 years. In Bani Sa'ad, where affected individuals had been regularly targeted with ivermectin over the last 15 years, we found that the anti-Ov16 IgG4 seroprevalence rate was significantly lower among children aged ≤10 years (9.1%; 5/55) compared to those >10 years (24.5%; 37/151), reflecting a possible decline in disease transmission. We also revealed onchocerciasis transmission in districts with unknown previous endemicity for the first time, with rates of 8.0% and 6.1% being found in Al Marawi'ah and As Sukhnah districts of Hodeidah. Large-scale surveys are recommended for mapping of O. volvulus in human and blackfly populations in endemic foci and neighboring untargeted areas of uncertain endemicity as a forward step towards the elimination of the disease from the country.
Collapse
Affiliation(s)
- Mohammed A. K. Mahdy
- Tropical Disease Research Center, University of Science and Technology, Sana’a, Yemen
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
- * E-mail:
| | - Rashad Abdul-Ghani
- Tropical Disease Research Center, University of Science and Technology, Sana’a, Yemen
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | | | - Samira M. A. Al-Eryani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Abdulsalam M. Al-Mekhlafi
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Sami A. A. Alhaidari
- National Schistosomiasis and Parasites Control Program, Ministry of Public Health and Population, Sana’a, Yemen
| | - Ahmed A. Azazy
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, KSA
| |
Collapse
|
6
|
Lee P, Dharmasena A, Ajdukiewicz KMB, Ataullah S. Mansonella ozzardi parasitic infestation in the orbit. Int J Ophthalmol 2017; 10:1630-1632. [PMID: 29062789 PMCID: PMC5638991 DOI: 10.18240/ijo.2017.10.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/20/2017] [Indexed: 11/23/2022] Open
Affiliation(s)
- Princeton Lee
- Department of Oculoplastic, Lacrimal and Orbital Surgery, Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH, United Kingdom
| | - Aruna Dharmasena
- Department of Oculoplastic, Lacrimal and Orbital Surgery, Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH, United Kingdom
| | - Katherine MB Ajdukiewicz
- Department of Infectious Disease & Tropical Medicine, North Manchester General Hospital, Delaunays Road, Manchester, M8 5RB, United Kingdom
| | - Sajid Ataullah
- Department of Oculoplastic, Lacrimal and Orbital Surgery, Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WH, United Kingdom
| |
Collapse
|
7
|
Prichard RK. Ivermectin resistance and overview of the Consortium for Anthelmintic Resistance SNPs. Expert Opin Drug Discov 2013; 2:S41-52. [PMID: 23489032 DOI: 10.1517/17460441.2.s1.s41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ivermectin (IVM) has transformed nematode parasite control in veterinary medicine and the control of some nematode infections in humans, such as onchocerciasais, lymphatic filariasis in Africa and strongyloidiasis. Unfortunately, IVM resistance is now a serious problem for parasite control in livestock and there is a concern about resistance development and spread in nematode parasites of humans. IVM is believed to act by opening glutamate-gated chloride channels and GABA-gated channels in invertebrate neurons or muscle cells, leading to hyperpolarisation of the cells and to an inhibitory paralysis. However, in the filarial nematodes, it is not altogether clear that the effect of IVM is confined to these actions or even whether these are the most important. Alterations in some ligand-gated ion channel (LGIC) receptor subunits may play a role in the mechanisms of IVM resistance in some nematodes, but the evidence that changes in LGICs are the most important cause of IVM resistance in nematodes is far from clear. What is evident is that IVM is an excellent substrate for some ATP-binding cassette transporters, IVM selects for changes in expression levels of ABC transporters, such as P-glycoproteins, and that altered levels of some ABC transporters contribute to IVM resistance. In addition, there is growing evidence that IVM selects on β-tubulin, at least in some nematodes. Based on these various mechanisms, which contribute to IVM resistance, it may become possible to develop panels of molecular markers for IVM resistance in different nematode parasites. In order to stimulate the development of such markers, an international Consortium for Anthelmintic Resistance SNPs (CARS) has been developed to help coordinate marker development, advance our knowledge of helminth biology and possibly assist with the development of new anthelmintic molecules.
Collapse
Affiliation(s)
- Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada 1 514 398 7729 ; +1 514 398 7594 ;
| |
Collapse
|
8
|
Chittrakarn S, Janchawee B, Ruangrut P, Kansenalak S, Chethanond U, Kobasa T, Thammapalo S. Pharmacokinetics of ivermectin in cats receiving a single subcutaneous dose. Res Vet Sci 2009; 86:503-7. [DOI: 10.1016/j.rvsc.2008.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 06/25/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
|
9
|
Guzzo CA, Furtek CI, Porras AG, Chen C, Tipping R, Clineschmidt CM, Sciberras DG, Hsieh JY, Lasseter KC. Safety, Tolerability, and Pharmacokinetics of Escalating High Doses of Ivermectin in Healthy Adult Subjects. J Clin Pharmacol 2002. [DOI: 10.1177/009127002237994] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Cynthia A. Guzzo
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - Christine I. Furtek
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - Arturo G. Porras
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - Cong Chen
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - Robert Tipping
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - Coleen M. Clineschmidt
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - David G. Sciberras
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | - John Y‐K. Hsieh
- Merck Research Laboratories, Blue Bell and West Point, Pennsylvania, and Terlings Park, United Kingdom
| | | |
Collapse
|
10
|
Skálová L, Szotáková B, Machala M, Neca J, Soucek P, Havlasová J, Wsól V, Krídová L, Kvasnicková E, Lamka J. Effect of ivermectin on activities of cytochrome P450 isoenzymes in mouflon (Ovis musimon) and fallow deer (Dama dama). Chem Biol Interact 2001; 137:155-67. [PMID: 11551531 DOI: 10.1016/s0009-2797(01)00227-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ivermectin is an antiparasitic drug widely used in veterinary and human medicine. We have found earlier that repeated treatments of rats with high doses of this drug led to significant increase of cytochrome P450-dependent 7-methoxyresorufin O-demethylase (MROD) and 7-ethoxyresorufin O-deethylase (EROD) activities in hepatic microsomes. In the present study, the effects of ivermectin on cytochrome P450 (CYP) activities were investigated in mouflon (Ovis musimon) and fallow deer (Dama dama). This study was conducted also to point out general lack of information on both basal levels of CYP enzymes and their inducibilities by veterinary drugs in wild ruminants. Liver microsomes were prepared from control animals, mouflons, after single or repeated (six doses in six consecutive days) treatments with therapeutic doses of ivermectin (0.5 mg kg(-1) of body weight), and fallow deer exposed to repeated doses of ivermectin under the same conditions. Alkyloxyresorufins, testosterone and chlorzoxazone were used as the specific substrate probes of activities of the CYP isoenzymes. A single therapeutic dose of ivermectin significantly induced (300-400% of the control group) the activities of all alkyloxyresorufin dealkylases tested in mouflon liver microsomes. Repeated doses of ivermectin also caused an increase of these activities, but due to fair inter-individual differences, this increase was not significant. The administration of ivermectin led to an induction (170-210% of the control) of the testosterone 6beta- and 16alpha-hydroxylase activities in mouflon liver but no significant modulation of chlorzoxazone hydroxylase (CZXOH) activity was found in mouflon liver. CYP-dependent activities in hepatic microsomes were generally higher in fallow deer than in mouflons. However, with the exception of slight increase in the 7-benzyloxyresorufin O-dealkylase (BROD) activities, no significant modulation of the other activities was observed. The induction of CYP3A-like isoenzyme was confirmed by immunoblotting only in the microsomes from mouflons administered with repeated doses of ivermectin; however, no significant increase of CYP1A isoenzymes was observed due to a weak cross-reactivity of anti-rat CYP1A1/2 polyclonal antibodies used in the study. The results indicate that ivermectin should be considered as an inducer of several cytochrome P450 isoenzymes, including CYP1A, 2B and 3A subfamilies, in mouflons. The comparison of induction effect of ivermectin in rat, mouflon and fallow deer also demonstrates the inter-species differences in inducibility of CYP enzymes.
Collapse
Affiliation(s)
- L Skálová
- Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fricker G, Gutmann H, Droulle A, Drewe J, Miller DS. Epithelial transport of anthelmintic ivermectin in a novel model of isolated proximal kidney tubules. Pharm Res 1999; 16:1570-5. [PMID: 10554099 DOI: 10.1023/a:1018956621376] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The mechanism of excretion of the anthelmintic drug ivermectin was investigated in a novel experimental model of functionally intact proximal tubules isolated from a teleost fish (Fundulus heteroclitus). METHODS Secretion into the lumens of freshly isolated proximal tubules was studied by means of confocal laser scanning microscopy and digital image analysis using ivermectin and fluorescent labelled ivermectin (BODIPY-ivermectin; BI) as substrates. RESULTS The tubular cells rapidly accumulated BI from the medium and attained steady state within 25 minutes. Luminal fluorescence in the steady state was 5-7 times higher as compared to intracellular fluorescence. The secretion of BI into the tubular lumens was inhibited in a dose dependent manner by unlabelled ivermectin and inhibitors of the renal excretory membrane pump p-glycoprotein, namely SDZ PSC-833 and verapamil, but not by leukotriene C4, a substrate of the renal export protein mrp2. Accumulation inside the tubular cells was not affected by the added inhibitors. Ivermectin inhibited the renal secretion of the fluorescent cyclosporin derivative NBDL-CS, a substrate of p-glycoprotein, but not the secretion of the mrp2-substrate fluorescein-methotrexate, nor the secretion of fluorescein, a substrate of the classical renal organic anion transporter. CONCLUSIONS The data are consistent with BI and ivermectin interacting in teleost kidney tubules exclusively with p-glycoprotein, but not with one of the other known excretory transport systems. In addition, the studies demonstrate that freshly isolated functionally intact kidney tubules from killifish are a useful tool to differentiate the substrate specificity of renal transport systems with respect to drug elimination.
Collapse
Affiliation(s)
- G Fricker
- Mount Desert Island Biological Laboratory, Salsbury Cove, Maine, USA.
| | | | | | | | | |
Collapse
|