1
|
Yasui Y, Miyamoto W, Shimozono Y, Tsukada K, Kawano H, Takao M. Evidence-Based Update on the Surgical Technique and Clinical Outcomes of Retrograde Drilling: A Systematic Review. Cartilage 2024:19476035241239303. [PMID: 38506486 DOI: 10.1177/19476035241239303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Retrograde drilling is an established surgical technique to treat osteochondral lesions of the talus (OLT). It involves non-trans-articular drilling to induce subchondral bone revascularization and bone formation without damaging the overlying articular cartilage. The present study aimed to elucidate the heterogeneity of clinical studies on retrograde drilling for OLT. DESIGN A systematic search of the MEDLINE, Web of Science, EMBASE, and Cochrane Library databases for studies published between January 1996 and August 27, 2022, was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines by two independent reviewers. The included studies were evaluated for their level of evidence (LoE) and quality of evidence (QoE) using the Modified Coleman Methodology Score. Variables reporting surgical and clinical outcomes and complications were evaluated. RESULTS Eleven studies with 207 ankles were included (mean follow-up period = 31.1 months). The mean LoE was 3.8 (LoE 3: two studies, LoE 4: nine studies), and the mean QoE was 50.8 (fair: three studies, poor: eight studies). Ten studies used the American Orthopedic Foot and Ankle Society (AOFAS) score, which improved from 57.9 preoperatively to 86.1 postoperatively. The period and protocol of conservative treatment, lesion character, surgical technique, and postoperative protocol were inconsistent or underreported. CONCLUSIONS This systematic review revealed that low LoE and poor QoE, coupled with heterogeneity among the included studies, impede definitive conclusions regarding the effectiveness of this technique. Consequently, well-designed clinical trials are essential to develop standardized clinical guidelines for using retrograde drilling in OLT.
Collapse
Affiliation(s)
- Youichi Yasui
- Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Wataru Miyamoto
- Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | | | - Keisuke Tsukada
- Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Hirotaka Kawano
- Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masato Takao
- Clinical and Research Institute for Foot and Ankle Surgery, Jujo Hospital, Kisarazu, Japan
| |
Collapse
|
2
|
Cui Y, Chen B, Wang G, Wang J, Liu B, Zhu L, Xu Q. Partial talar replacement with a novel 3D printed prosthesis. Comput Assist Surg (Abingdon) 2023; 28:2198106. [PMID: 37070416 DOI: 10.1080/24699322.2023.2198106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The treatment of talus avascular necrosis (AVN) is challenging owing to its unique anatomical features. Despite decades of studies, till date, there is no appropriate treatment for talus AVN. Therefore, surgeons need to develop newer surgical methods. In the present study we introduce a new surgical method, 3D printed partial talus replacement (PTR), to treat partial talus necrosis and collapse (TNC). METHODS A male patient with talus AVN underwent PTR in our hospital. The morphology of the talus was quantified using 3D computed tomography (CT) imaging. A novel 3D printed titanium prothesis was designed and manufactured according to the findings of the CT imaging. The prosthesis was applied during talus replantation surgery to reconstruct the anatomical structure of the ankle. The follow-up period for this patient was 24 months. The visual analog scale (VAS) scores before and after surgery, American Orthopedic Foot and Ankle Score (AOFAS), ankle range of motion, and postoperative complications were recorded to evaluate the prognosis. RESULTS The anatomical structure of the talus was reconstructed. The patient was satisfied with the effects of treatment, recovery, and function. The VAS score decreased from 5 to 1. The AOFAS improved from 70 to 93. The range of motion remained the same as that during the pre-operation. The patient returned to a normal life. CONCLUSION 3D printed PTR is a new surgical method for talus AVN that can provide satisfactory outcomes. In future, PTR might be an effective and preferential treatment for the treatment of partial talus AVN and collapse.
Collapse
Affiliation(s)
- Yidong Cui
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Bin Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Gang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Juntao Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Ben Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Lei Zhu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Qingjia Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, P.R. China
| |
Collapse
|
3
|
Walther M, Gottschalk O, Madry H, Müller PE, Steinwachs M, Niemeyer P, Niethammer TR, Tischer T, Petersen J, Feil R, Fickert S, Schewe B, Hörterer H, Ruhnau K, Becher C, Klos K, Plaass C, Rolauffs B, Behrens P, Spahn G, Welsch G, Angele P, Ahrend MD, Kasten P, Erggelet C, Ettinger S, Günther D, Körner D, Aurich M. Etiology, Classification, Diagnostics, and Conservative Management of Osteochondral Lesions of the Talus. 2023 Recommendations of the Working Group "Clinical Tissue Regeneration" of the German Society of Orthopedics and Traumatology. Cartilage 2023; 14:292-304. [PMID: 37082983 PMCID: PMC10601568 DOI: 10.1177/19476035231161806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 04/22/2023] Open
Abstract
METHODS Peer-reviewed literature was analyzed regarding different topics relevant to osteochondral lesions of the talus (OLTs) treatment. This process concluded with a statement for each topic reflecting the best scientific evidence available for a particular diagnostic or therapeutic concept, including the grade of recommendation. Besides the scientific evidence, all group members rated the statements to identify possible gaps between literature and current clinical practice. CONCLUSION In patients with minimal symptoms, OLT progression to ankle osteoarthritis is unlikely. Risk factors for progression are the depth of the lesion on MRI, subchondral cyst formation, and the extent of bone marrow edema. Conservative management is the adaptation of activities to the performance of the ankle joint. A follow-up imaging after 12 months helps not to miss any progression. It is impossible to estimate the probability of success of conservative management from initial symptoms and imaging. Cast immobilization is an option in OLTs in children, with a success rate of approximately 50%, although complete healing, estimated from imaging, is rare. In adults, improvement by conservative management ranges between 45% and 59%. Rest and restrictions for sports activities seem to be more successful than immobilization. Intra-articular injections of hyaluronic acid and platelet-rich plasma can improve pain and functional scores for more than 6 months. If 3 months of conservative management does not improve symptoms, surgery can be recommended.
Collapse
Affiliation(s)
- Markus Walther
- Schön Klinik München Harlaching, FIFA Medical Centre of Excellence, Munich, Germany
- Department of Orthopeadics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- König-Ludwig-Haus, Julius Maximilian University of Würzburg, Würzburg, Germany
- Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | - Oliver Gottschalk
- Schön Klinik München Harlaching, FIFA Medical Centre of Excellence, Munich, Germany
- Department of Orthopeadics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Henning Madry
- Institute of Experimental Orthopaedics and Department of Orthopaedic Surgery, Saarland University, Homburg, Germany
| | - Peter E. Müller
- Department of Orthopeadics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Matthias Steinwachs
- SportClinic Zürich, Klinik Hirslanden, Zürich, Switzerland
- ETH Zürich, Zürich, Switzerland
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Philipp Niemeyer
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- OCM—Hospital for Orthopedic Surgery Munich, Munich, Germany
| | - Thomas R. Niethammer
- Department of Orthopeadics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Thomas Tischer
- Klinik für Orthopädie und Unfallchirurgie, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | | | - Roman Feil
- Klinik für Unfallchirurgie und Orthopädie, Kath. Marienkrankenhaus gGmbH, Hamburg, Germany
| | - Stefan Fickert
- Sporthopaedicum Straubing, Straubing, Germany
- Sporthopaedicum Regensburg, Regensburg, Germany
| | - Bernhard Schewe
- Orthopädisch Chirurgisches Centrum Tübingen, Tübingen, Germany
| | - Hubert Hörterer
- Schön Klinik München Harlaching, FIFA Medical Centre of Excellence, Munich, Germany
- Department of Orthopeadics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Christoph Becher
- Internationales Zentrum für Orthopädie, ATOS Klinik Heidelberg, Heidelberg, Germany
| | | | - Christian Plaass
- Orthopedic Clinic of Medical School Hannover, DIAKOVERE Annastift, Hannover, Germany
| | - Bernd Rolauffs
- Klinik für Orthopädie und Unfallchirurgie and G.E.R.N. Forschungszentrum, Universitätsklinikum Freiburg, Freiburg, Germany
| | | | - Gunter Spahn
- Center of Trauma and Orthopaedic Surgery Eisenach, Eisenach, Germany
| | | | - Peter Angele
- Sporthopaedicum Straubing, Straubing, Germany
- Sporthopaedicum Regensburg, Regensburg, Germany
- Department of Trauma and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Marc-Daniel Ahrend
- BG Unfallklinik Tübingen, Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Philip Kasten
- Orthopädisch Chirurgisches Centrum Tübingen, Tübingen, Germany
| | - Christoph Erggelet
- Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- alphaclinic zürich, Zürich, Switzerland
| | - Sarah Ettinger
- Orthopedic Clinic of Medical School Hannover, DIAKOVERE Annastift, Hannover, Germany
| | - Daniel Günther
- Department of Orthopaedic Surgery, Trauma Surgery, and Sports Medicine, Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Daniel Körner
- BG Unfallklinik Tübingen, Klinik für Unfall- und Wiederherstellungschirurgie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Matthias Aurich
- BG Klinikum Bergmannstrost Halle, Halle (Saale), Germany
- Abteilung für Unfall- und Wiederherstellungschirurgie, Martin-Luther-University Halle-Wittenberg, Universitätsklinikum Halle (Saale), Halle, Germany
| |
Collapse
|
4
|
Haug LP, Sill AP, Shrestha R, Patel KA, Kile TA, Fox MG. Osteochondral Lesions of the Ankle and Foot. Semin Musculoskelet Radiol 2023; 27:269-282. [PMID: 37230127 DOI: 10.1055/s-0043-1766110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Osteochondral lesions (OCLs) in the ankle are more common than OCLs of the foot, but both share a similar imaging appearance. Knowledge of the various imaging modalities, as well as available surgical techniques, is important for radiologists. We discuss radiographs, ultrasonography, computed tomography, single-photon emission computed tomography/computed tomography, and magnetic resonance imaging to evaluate OCLs. In addition, various surgical techniques used to treat OCLs-debridement, retrograde drilling, microfracture, micronized cartilage-augmented microfracture, autografts, and allografts-are described with an emphasis on postoperative appearance following these techniques.
Collapse
Affiliation(s)
- Logan P Haug
- Department of Radiology, Mayo Clinic, Phoenix, Arizona
| | - Andrew P Sill
- Department of Radiology, Mayo Clinic, Phoenix, Arizona
| | | | - Karan A Patel
- Department of Orthopedics, Mayo Clinic, Phoenix, Arizona
| | - Todd A Kile
- Department of Orthopedics, Mayo Clinic, Phoenix, Arizona
| | - Michael G Fox
- Department of Radiology, Mayo Clinic, Phoenix, Arizona
| |
Collapse
|
5
|
Xu H, Zhang B, Chen Y, Zeng F, Wang W, Chen Z, Cao L, Shi J, Chen J, Zhu X, Xue Y, He R, Ji M, Hua Y. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment. Ann Rheum Dis 2023; 82:416-427. [PMID: 36109143 DOI: 10.1136/ard-2022-222764] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Increasing evidence suggests that impaired cartilage is a substantial risk factor for the progression from hyperuricaemia to gout. Since the relationship between cartilage matrix protein and gout flares remains unclear, we investigated its role in monosodium urate (MSU) crystallisation and following inflammation. METHODS Briefly, we screened for cartilage matrix in synovial fluid from gouty arthritis patients with cartilage injuries. After identifying a correlation between crystals and matrix molecules, we conducted image analysis and classification of crystal phenotypes according to their morphology. We then evaluated the differences between the cartilage matrix protein-MSU complex and the pure MSU crystal in their interaction with immune cells and identified the related signalling pathway. RESULTS Type II collagen (CII) was found to be enriched around MSU crystals in synovial fluid after cartilage injury. Imaging analysis revealed that CII regulated the morphology of single crystals and the alignment of crystal bows in the co-crystalline system, leading to greater phagocytosis and oxidative stress in macrophages. Furthermore, CII upregulated MSU-induced chemokine and proinflammatory cytokine expression in macrophages, thereby promoting the recruitment of leucocytes. Mechanistically, CII enhanced MSU-mediated inflammation by activating the integrin β1(ITGB1)-dependent TLR2/4-NF-κB signal pathway. CONCLUSION Our study demonstrates that the release of CII and protein-crystal adsorption modifies the crystal profile and promotes the early immune response in MSU-mediated inflammation. These findings open up a new path for understanding the relationship between cartilage injuries and the early immune response in gout flares.
Collapse
Affiliation(s)
- HanLin Xu
- Department of Sports Medicine, Huashan Hospital,Fudan University, Shanghai, China
| | - Bohan Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai, China
| | - Yaxin Chen
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai, China
| | - Fengzhen Zeng
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Wenjuan Wang
- Department of Sports Medicine, Huashan Hospital,Fudan University, Shanghai, China
| | - Ziyi Chen
- Department of Sports Medicine, Huashan Hospital,Fudan University, Shanghai, China
| | - Ling Cao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital,Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - MinBiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Yiwu Research Institute, Fudan University, Shanghai, China
| | - YingHui Hua
- Department of Sports Medicine, Huashan Hospital,Fudan University, Shanghai, China
| |
Collapse
|
6
|
Hurley DJ, Davey MS, Hurley ET, Murawski CD, Calder JDF, D'Hooghe P, van Bergen CJA, Walls RJ, Ali Z, Altink JN, Batista J, Bayer S, Berlet GC, Buda R, Dahmen J, DiGiovanni CW, Ferkel RD, Gianakos AL, Giza E, Glazebrook M, Guillo S, Hangody L, Haverkamp D, Hintermann B, Hogan MV, Hua Y, Hunt K, Jamal MS, Karlsson J, Kearns S, Kerkhoffs GMMJ, Lambers K, Lee JW, McCollum G, Mercer NP, Mulvin C, Nunley JA, Paul J, Pearce C, Pereira H, Prado M, Raikin SM, Savage-Elliott I, Schon LC, Shimozono Y, Stone JW, Stufkens SAS, Sullivan M, Takao M, Thermann H, Thordarson D, Toale J, Valderrabano V, Vannini F, van Dijk CN, Walther M, Yasui Y, Younger AS, Kennedy JG. Paediatric ankle cartilage lesions: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. J ISAKOS 2022; 7:90-94. [PMID: 35774008 DOI: 10.1016/j.jisako.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The evidence supporting best practice guidelines in the field of cartilage repair of the ankle are based on both low quality and low levels of evidence. Therefore, an international consensus group of experts was convened to collaboratively advance toward consensus opinions based on the best available evidence on key topics within cartilage repair of the ankle. The purpose of this article is to report the consensus statements on "Pediatric Ankle Cartilage Lesions" developed at the 2019 International Consensus Meeting on Cartilage Repair of the Ankle. METHODS Forty-three international experts in cartilage repair of the ankle representing 20 countries convened to participate in a process based on the Delphi method of achieving consensus. Questions and statements were drafted within four working groups focusing on specific topics within cartilage repair of the ankle, after which a comprehensive literature review was performed and the available evidence for each statement was graded. Discussion and debate occurred in cases where statements were not agreed upon in unanimous fashion within the working groups. A final vote was then held, and the strength of consensus was characterised as follows: consensus: 51-74%; strong consensus: 75-99%; unanimous: 100%. RESULTS A total of 12 statements on paediatric ankle cartilage lesions reached consensus during the 2019 International Consensus Meeting on Cartilage Repair of the Ankle. Five achieved unanimous support, and seven reached strong consensus (>75% agreement). All statements reached at least 84% agreement. CONCLUSIONS This international consensus derived from leaders in the field will assist clinicians with the management of paediatric ankle cartilage lesions.
Collapse
Affiliation(s)
- Daire J Hurley
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martin S Davey
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eoghan T Hurley
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher D Murawski
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - James D F Calder
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pieter D'Hooghe
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Raymond J Walls
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zakariya Ali
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Nienke Altink
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jorge Batista
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Steve Bayer
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gregory C Berlet
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Roberto Buda
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jari Dahmen
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Richard D Ferkel
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arianna L Gianakos
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric Giza
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mark Glazebrook
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stéphane Guillo
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laszlo Hangody
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel Haverkamp
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Beat Hintermann
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - MaCalus V Hogan
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yinghui Hua
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kenneth Hunt
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M Shazil Jamal
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jón Karlsson
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Kearns
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gino M M J Kerkhoffs
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kaj Lambers
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Graham McCollum
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nathaniel P Mercer
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Conor Mulvin
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - James A Nunley
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jochen Paul
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher Pearce
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Helder Pereira
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marcelo Prado
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Steven M Raikin
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ian Savage-Elliott
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lew C Schon
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yoshiharu Shimozono
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - James W Stone
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sjoerd A S Stufkens
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martin Sullivan
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Masato Takao
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hajo Thermann
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Thordarson
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - James Toale
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Victor Valderrabano
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francesca Vannini
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - C Niek van Dijk
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Markus Walther
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Youichi Yasui
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alastair S Younger
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John G Kennedy
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Murawski CD, Jamal MS, Hurley ET, Buda R, Hunt K, McCollum G, Paul J, Vannini F, Walther M, Yasui Y, Ali Z, Altink JN, Batista J, Bayer S, Berlet GC, Calder JD, Dahmen J, Davey MS, D’Hooghe P, DiGiovanni CW, Ferkel RD, Gianakos AL, Giza E, Glazebrook M, Hangody L, Haverkamp D, Hintermann B, Hua Y, Hurley DJ, Karlsson J, Kearns S, Kennedy JG, Kerkhoffs GM, Lambers K, Lee JW, Mercer NP, Mulvin C, Nunley JA, Pearce C, Pereira H, Prado M, Raikin SM, Savage-Elliott I, Schon LC, Shimozono Y, Stone JW, Stufkens SA, Sullivan M, Takao M, Thermann H, Thordarson D, Toale J, Valderrabano V, van Bergen CJ, Niek van Dijk C, Walls RJ, Younger AS, Hogan MV. Terminology for Osteochondral Lesions of the Ankle Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. J ISAKOS 2022; 7:62-66. [DOI: 10.1016/j.jisako.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Sadler TJ, Riede P. A painful swollen ankle after a fall. BMJ 2021; 375:n2315. [PMID: 34711542 DOI: 10.1136/bmj.n2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Timothy J Sadler
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Philipp Riede
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
9
|
Guelfi M, DiGiovanni CW, Calder J, Malagelada F, Cordier G, Takao M, Batista J, Nery C, Delmi M, Dalmau-Pastor M, Carcuro G, Khazen G, Vega J. Large variation in management of talar osteochondral lesions among foot and ankle surgeons: results from an international survey. Knee Surg Sports Traumatol Arthrosc 2021; 29:1593-1603. [PMID: 33221934 DOI: 10.1007/s00167-020-06370-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Surgeons management of osteochondral lesions of the talus (OLT) may be different to the published guidelines because not all treatment recommendations are feasible in every country. This study aimed to assess how OLT are managed worldwide by foot and ankle surgeons. METHODS A web-based survey was distributed to the members of 21 local and international scientific societies focused on foot and ankle or sports medicine surgery. Answers with a prevalence greater than 75% of respondents were considered a "main tendency", whereas where prevalence exceeded 50% of respondents they were considered a "tendency". RESULTS A total of 1804 surgeons from 79 different countries returned the survey. The responses to 19 of 28 questions (68%) regarding management and treatment of OLT achieved a main tendency (> 75%) or a tendency (> 50%). Symptoms reported to be most suspicious for OLT were pain on weight-bearing (WB) and after activity (83%), deep localization of the pain (62%), and any history of trauma (55%). 89% of surgeons routinely obtain an MRI, 72% routinely get WB radiographs, and 50% perform a CT scan. When treated surgically, OLTs are managed in isolation by only 7% of surgeons, and combined with ligament repair or reconstruction by 79%; 67% report simultaneous excision of soft-tissue or bony impingements (64%). For lesions less than 10-15 mm in diameter, bone marrow stimulation (BMS) represents the first choice of treatment for 78% of surgeons (main tendency). No other treatment was recorded as a tendency. For lesions greater than 15 mm in diameter no tendencies were recorded. The BMS represented the most preferred treatment being the first choice of treatment for 41% of surgeons. OLT depth had little influence on treatment choice: 71% of surgeons treating small lesions and 69% treating large lesions would choose the same treatment regardless of whether the lesion had a depth lesser or greater than 5 mm. CONCLUSION The management of OLT by foot and ankle surgeons from around the world remains extremely varied. The main clinical relevance of this study is that it provides updated information with regard to the management of OLT internationally, which could be used by surgeons worldwide in their decision-making and to inform the patient about available surgical options. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Matteo Guelfi
- Foot and Ankle Unit, Casa di Cura Villa Montallegro, Genoa, Italy. .,Department of Orthopaedic Surgery "Gruppo Policlinico di Monza", Clinica Salus, Alessandria, Italy. .,Human Anatomy and Embryology Unit, Department of Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Christopher W DiGiovanni
- Division of Foot and Ankle Surgery, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Calder
- Fortius Clinic and Department of Bioengineering, Imperial College, London, UK
| | - Francesc Malagelada
- Department of Trauma and Orthopaedic Surgery, Royal London Hospital, Barts Health NHS Trust, London, UK
| | | | - Masato Takao
- Clinical and Research Institute for Foot and Ankle Surgery, Jujo Hospital, Chiba, Japan
| | - Jorge Batista
- Sports Medicine Department Club Atletico Boca Juniors, Buenos Aires and Arthroscopic Center Jorge Batista SA, Buenos Aires, Argentina
| | - Caio Nery
- Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Marino Delmi
- Clinique Des Grangettes, Chêne-Bougeries, Geneva, Switzerland
| | - Miki Dalmau-Pastor
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | | | - Gabriel Khazen
- Foot and Ankle Department, Hospital de Clínicas Caracas, Caracas, Venezuela
| | - Jordi Vega
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Foot and Ankle Unit, Hospital Quirón, Barcelona, Spain.,Foot and Ankle Unit, Orthopedic Department, iMove Tres Torres, Barcelona, Spain
| |
Collapse
|
10
|
Martin KD, McBride TJ, Horan DP, Haleem A, Huh J, Groth A, Dawson LK. Validation of 9-Grid Scheme for Localizing Osteochondral Lesions of the Talus. FOOT & ANKLE ORTHOPAEDICS 2020; 5:2473011420944925. [PMID: 35097402 PMCID: PMC8697075 DOI: 10.1177/2473011420944925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A 9-grid scheme has been integrated into the foot and ankle literature to help clinicians and researchers localize osteochondral lesions of the talus (OLTs). We hypothesized that fellowship-trained orthopedic foot and ankle surgeons would have a high rate of intra/inter-observer reliability when localizing OLTs, therefore validating the scheme. METHODS We queried our institution's foot and ankle radiographic database for magnetic resonance images with OLTs. Each MRI was reviewed by the senior author, and 2 key images (widest OLT diameter) from each tangential view were copied and combined onto one slide. Fifty consecutive deidentified images of ankles were then sent to 4 practicing fellowship-trained foot and ankle surgeons. Each was asked to identify which zone the OLT was localized within. A radiologist's report served as the control. Statistical analyses were performed using Cohen and Fleiss kappa tests. RESULTS The reviewers demonstrated majority consensus on 45/50 images with substantial agreement for zones 4 and 6. The interobserver reliability was moderate with a κ = 0.55. The mean intraobserver reliability was substantial, with a κ = 0.79. A musculoskeletal radiologist determined there were 3 lesions in zone 7, 18 lesions in zone 4, and 29 lesions in zone 6. CONCLUSION This study is the first to critically evaluate the 9-grid scheme and its reliability among orthopedic foot and ankle surgeons. Our study found that the 9-grid scheme is an accurate method of localization for OLTs with high intra- and moderate interobserver reliability between surgeons. LEVEL OF EVIDENCE Level IV, retrospective diagnostic study.
Collapse
Affiliation(s)
| | | | | | - Amgad Haleem
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Adam Groth
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Laura K. Dawson
- Colonel Florence A Blanchfield Army Community Hospital, Fort Campbell, KY, USA
| |
Collapse
|
11
|
Steman JA, Dahmen J, Lambers KT, Kerkhoffs GM. Return to Sports After Surgical Treatment of Osteochondral Defects of the Talus: A Systematic Review of 2347 Cases. Orthop J Sports Med 2019; 7:2325967119876238. [PMID: 31673563 PMCID: PMC6806124 DOI: 10.1177/2325967119876238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteochondral defects (OCDs) of the talus are found subsequent to ankle sprains and ankle fractures. With many surgical treatment strategies available, there is no clear evidence on return-to-sport (RTS) times and rates. PURPOSE To summarize RTS times and rates for talar OCDs treated by different surgical techniques. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS The literature from January 1996 to November 2018 was screened, and identified studies were divided into 7 different surgical treatment groups. The RTS rate, with and without associated levels of activity, and the mean time to RTS were calculated per study. When methodologically possible, a simplified pooling method was used to combine studies within 1 treatment group. Study bias was assessed using the MINORS (Methodological Index for Non-Randomized Studies) scoring system. RESULTS A total of 61 studies including 2347 talar OCDs were included. The methodological quality of the studies was poor. There were 10 retrospective case series (RCSs) that investigated bone marrow stimulation in 339 patients, with a pooled mean rate of RTS at any level of 88% (95% CI, 84%-91%); 2 RCSs investigating internal fixation in 47 patients found a pooled RTS rate of 97% (95% CI, 85%-99%), 5 RCSs in which autograft transplantation was performed in 194 patients found a pooled RTS rate of 90% (95% CI, 86%-94%), and 3 prospective case series on autologous chondrocyte implantation in 39 patients found a pooled RTS rate of 87% (95% CI, 73%-94%). The rate of return to preinjury level of sports was 79% (95% CI, 70%-85%) for 120 patients after bone marrow stimulation, 72% (95% CI, 60%-83%) for 67 patients after autograft transplantation, and 69% (95% CI, 54%-81%) for 39 patients after autologous chondrocyte implantation. The mean time to RTS ranged from 13 to 26 weeks, although no pooling was possible for this outcome measure. CONCLUSION Different surgical treatment options for talar OCDs allow for adequate RTS times and rates. RTS rates decreased when considering patients' return to preinjury levels versus return at any level.
Collapse
Affiliation(s)
- Jason A.H. Steman
- Department of Orthopaedic Surgery, Academic Medical Center,
University of Amsterdam, Amsterdam, the Netherlands
- Academic Center for Evidence-Based Sports Medicine, Amsterdam, the
Netherlands
- Amsterdam Collaboration on Health and Safety in Sports, Academic
Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jari Dahmen
- Department of Orthopaedic Surgery, Academic Medical Center,
University of Amsterdam, Amsterdam, the Netherlands
- Academic Center for Evidence-Based Sports Medicine, Amsterdam, the
Netherlands
- Amsterdam Collaboration on Health and Safety in Sports, Academic
Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kaj T.A. Lambers
- Department of Orthopaedic Surgery, Academic Medical Center,
University of Amsterdam, Amsterdam, the Netherlands
- Academic Center for Evidence-Based Sports Medicine, Amsterdam, the
Netherlands
- Amsterdam Collaboration on Health and Safety in Sports, Academic
Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Orthopedic Surgery, Amphia Hospital, Breda, the
Netherlands
| | - Gino M.M.J. Kerkhoffs
- Department of Orthopaedic Surgery, Academic Medical Center,
University of Amsterdam, Amsterdam, the Netherlands
- Academic Center for Evidence-Based Sports Medicine, Amsterdam, the
Netherlands
- Amsterdam Collaboration on Health and Safety in Sports, Academic
Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Shimozono Y, Vannini F, Ferkel RD, Nakamura N, Kennedy JG. Restorative procedures for articular cartilage in the ankle: state-of-the-art review. J ISAKOS 2019. [DOI: 10.1136/jisakos-2017-000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|