1
|
Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins. Cancers (Basel) 2021; 13:cancers13081770. [PMID: 33917267 PMCID: PMC8068014 DOI: 10.3390/cancers13081770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In this review, the genetic landscape of squamous cell carcinoma is related to the potential targets of indirubin-based small molecules in cancer therapy. Being a component of traditional Chinese medicine, indirubins are used to treat chronic or inflammatory diseases, and have received increasing attention in cancer treatment due to their proapoptotic and antiproliferative activity. Frequent genetic alterations of squamous cell carcinomas are summarized, and it is discussed how these may render tumors susceptible to indirubin-based small molecule inhibitors. Abstract Skin cancers are the most common malignancies in the world. Among the most frequent skin cancer entities, squamous cell carcinoma (SCC) ranks second (~20%) after basal cell carcinoma (~77%). In early stages, a complete surgical removal of the affected tissue is carried out as standard therapy. To treat advanced and metastatic cancers, targeted therapies with small molecule inhibitors are gaining increasing attention. Small molecules are a heterogeneous group of protein regulators, which are produced by chemical synthesis or fermentation. The majority of them belong to the group of receptor tyrosine kinase inhibitors (RTKIs), which specifically bind to certain RTKs and directly influence the respective signaling pathway. Knowledge of characteristic molecular alterations in certain cancer entities, such as SCC, can help identify tumor-specific substances for targeted therapies. Most frequently, altered genes in SCC include TP53, NOTCH, EGFR, and CCND1. For example, the gene CCND1, which codes for cyclin D1 protein, is upregulated in nearly half of SCC cases and promotes proliferation of affected cells. A treatment with the small molecule 5′-nitroindirubin-monoxime (INO) leads to inhibition of cyclin D1 and thus inhibition of proliferation. As a component of Danggui Longhui Wan, a traditional Chinese medicine, indirubins are used to treat chronic diseases and have been shown to inhibit inflammatory reactions. Indirubins are pharmacologically relevant small molecules with proapoptotic and antiproliferative activity. In this review, we discuss the current literature on indirubin-based small molecules in cancer treatment. A special focus is on the molecular biology of squamous cell carcinomas, their alterations, and how these are rendered susceptible to indirubin-based small molecule inhibitors. The potential molecular mechanisms of the efficacy of indirubins in killing SCC cells will be discussed as well.
Collapse
|
2
|
Ningaraj N, Salimath B, Sankpal U, Perera R, Vats T. Targeted Brain Tumor Treatment-Current Perspectives. Drug Target Insights 2017. [DOI: 10.1177/117739280700200008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- N.S. Ningaraj
- Department of Pediatric Neurooncology and Molecular Pharmacology, Hoskins Center, Curtis and Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, Mercer University Medical School, 4700 Waters Avenue, Savannah, GA 31404, U.S.A
| | - B.P. Salimath
- Department of Biotechnology, University of Mysore, Mysore 570006, Karnataka, India
| | - U.T. Sankpal
- Department of Pediatric Neurooncology and Molecular Pharmacology, Hoskins Center, Curtis and Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, Mercer University Medical School, 4700 Waters Avenue, Savannah, GA 31404, U.S.A
| | - R Perera
- Department of Pediatric Neurooncology and Molecular Pharmacology, Hoskins Center, Curtis and Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, Mercer University Medical School, 4700 Waters Avenue, Savannah, GA 31404, U.S.A
| | - T Vats
- Department of Pediatric Neurooncology and Molecular Pharmacology, Hoskins Center, Curtis and Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, Mercer University Medical School, 4700 Waters Avenue, Savannah, GA 31404, U.S.A
| |
Collapse
|
3
|
Abstract
Neurologic complications can result from direct or indirect effects of cancer
therapy. Treatment toxicity may affect both the central nervous system and the
peripheral nervous system. Early recognition of these toxicities plays an important
role in the management of patients with cancer.
Collapse
Affiliation(s)
- Eva Lu Lee
- MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
4
|
Wen PY, Kesari S, Drappatz J. Malignant gliomas: strategies to increase the effectiveness of targeted molecular treatment. Expert Rev Anticancer Ther 2014; 6:733-54. [PMID: 16759164 DOI: 10.1586/14737140.6.5.733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, there has been increasing interest in the use of targeted molecular agents for the treatment of malignant gliomas. These agents are generally well tolerated but have demonstrated only modest activity. In this article, the current status of targeted molecular agents for malignant gliomas will be reviewed and strategies to improve their effectiveness will be discussed.
Collapse
Affiliation(s)
- Patrick Y Wen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, SW430D, Boston, MA 02115, USA.
| | | | | |
Collapse
|
5
|
Dekaminaviciute D, Kairys V, Zilnyte M, Petrikaite V, Jogaite V, Matuliene J, Gudleviciene Z, Vullo D, Supuran CT, Zvirbliene A. Monoclonal antibodies raised against 167-180 aa sequence of human carbonic anhydrase XII inhibit its enzymatic activity. J Enzyme Inhib Med Chem 2014; 29:804-10. [PMID: 24400872 DOI: 10.3109/14756366.2013.856424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract Human carbonic anhydrase XII (CA XII) is a single-pass transmembrane protein with an extracellular catalytic domain. This enzyme is being recognized as a potential biomarker for different tumours. The current study was aimed to generate monoclonal antibodies (MAbs) neutralizing the enzymatic activity of CA XII. Bioinformatics analysis of CA XII structure revealed surface-exposed sequences located in a proximity of its catalytic centre. Two MAbs against the selected antigenic peptide spanning 167-180 aa sequence of CA XII were generated. The MAbs were reactive with recombinant catalytic domain of CA XII expressed either in E. coli or mammalian cells. Inhibitory activity of the MAbs was demonstrated by a stopped flow CO2 hydration assay. The study provides new data on the surface-exposed linear CA XII epitope that may serve as a target for inhibitory antibodies with a potential immunotherapeutic application.
Collapse
|
6
|
Dacomitinib, an irreversible Pan-ErbB inhibitor significantly abrogates growth in head and neck cancer models that exhibit low response to cetuximab. PLoS One 2013; 8:e56112. [PMID: 23405260 PMCID: PMC3566064 DOI: 10.1371/journal.pone.0056112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/08/2013] [Indexed: 12/28/2022] Open
Abstract
Aberrant epidermal growth factor (EGF) signaling is associated with tumor growth in squamous cell carcinoma of the head and neck in humans (HNSCC), and is a major focus of targeted therapy. Cetuximab, a monoclonal antibody against EGFR, has been successful at prolonging survival but has only a 10% tumor shrinkage response rate in a clinical setting. The goal of this study was to compare dacomitinib (PF-00299804), a next generation small molecule tyrosine kinase inhibitor that irreversibly blocks multiple HER family receptors (HER-1 (EGFR), HER-2 and HER-4 tyrosine kinases), to cetuximab, the current FDA approved anti-EGFR medication for HNSCC and erlotinib, an EGFR specific small molecule tyrosine kinase inhibitor. Dacomitinib, erlotinib and cetuximab were tested in a panel of 27 HNSCC cell lines. Treatment with 100 ug/ml of cetuximab or 1 uM of erlotinib inhibited growth by at least 50% in 7/27 cell lines, while treatment with 1 uM of dacomitinib had similar growth inhibition in 17/27 lines. Cell lines representing three levels of sensitivity to dacomitinib were further examined using Western blots, cell cycle and apoptosis analysis. Treatment with 100 nM of dacomitinib reduced EGFR activity and downstream AKT and ERK pathways more effectively than treatment with 100 ug/ml of cetuximab in all ten tested lines. Although both compounds induced apoptosis at similar levels, dacomitinib caused greater G0/G1 arrest. Sensitivity to EGFR blockade was associated with levels of EGFR and ERK and was not associated with common oncogenic mutations and copy number variations. Phosphorylated and total EGFR and ERK levels correlate with sensitivity to both cetuximab and dacomitinib. Three of the four lines in the exquisitely sensitive group had the highest levels of phosphorylated and total EGFR and ERK among the ten lines selected, while the three resistant lines collectively had the lowest levels. Neither pAKT nor tAKT was associated with sensitivity.
Collapse
|
7
|
|
8
|
Yan W, Zhang W, Jiang T. Oncogene addiction in gliomas: implications for molecular targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:58. [PMID: 21575270 PMCID: PMC3113747 DOI: 10.1186/1756-9966-30-58] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022]
Abstract
Oncogene addiction is a phenomenon that the survival of cancer cells depends on an activated oncogene or inactivation of tumor suppressor gene, and is regarded as the 'Achilles heel' of the successful molecular targeted therapies in cancer. However, the role of oncogene addiction in gliomas has not been elucidated systematically. In this review, we summarize the current experimental and clinical evidence for the concept of oncogene addiction and describe the mechanisms explaining oncogene addiction in gliomas. And the clinical implications for oncogene addiction in molecular targeted therapy are further emphasized. In addition, we discuss future direction for defining complex "oncogene addiction network" through the integrated analysis of multiple platforms in the flow of genetic information in gliomagenesis.
Collapse
Affiliation(s)
- Wei Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | | | | |
Collapse
|
9
|
Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11:1165-90. [PMID: 19014342 DOI: 10.1089/ars.2008.2161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor (IGF)-induced signaling networks are vital in modulating multiple fundamental cellular processes, such as cell growth, survival, proliferation, and differentiation. Aberrations in the generation or action of IGF have been suggested to play an important role in several pathological conditions, including metabolic disorders, neurodegenerative diseases, and multiple types of cancer. Yet the exact mechanism involved in the pathogenesis of these diseases by IGFs remains obscure. Redox pathways involving reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenetic mechanism of various diseases by modifying key signaling pathways involved in cell growth, proliferation, survival, and apoptosis. Furthermore, ROS and RNS have been demonstrated to alter IGF production and/or action, and vice versa, and thereby have the ability to modulate cellular functions, leading to clinical manifestations of diseases. In this review, we provide an overview on the IGF system and discuss the potential role of IGF-1/IGF-1 receptor and redox pathways in the pathophysiology of several diseases.
Collapse
Affiliation(s)
- George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
10
|
Chen Y, Huang L. Tumor-targeted delivery of siRNA by non-viral vector: safe and effective cancer therapy. Expert Opin Drug Deliv 2009; 5:1301-11. [PMID: 19040393 DOI: 10.1517/17425240802568505] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RNA interference technology has been developed as a potential therapeutic agent for many indications, including cancer. Silencing a specific oncogene in tumor cells brings about cell death both in vitro and in vivo. However, there is a great need for powerful delivery strategies to enhance the therapeutic effect of small interfering RNA (siRNA). This review summarizes different signaling pathways inhibited by siRNA and the advantages of targeted siRNA as a delivery system.
Collapse
Affiliation(s)
- Yunching Chen
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Division of Molecular Pharmaceutics, Campus Box 7360 Kerr Hall, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
11
|
Yanagië H, Ogata A, Sugiyama H, Eriguchi M, Takamoto S, Takahashi H. Application of drug delivery system to boron neutron capture therapy for cancer. Expert Opin Drug Deliv 2008; 5:427-43. [PMID: 18426384 DOI: 10.1517/17425247.5.4.427] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. OBJECTIVE In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. METHODS We performed literature searches related to boron delivery systems in vitro and in vivo. RESULTS We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.
Collapse
Affiliation(s)
- Hironobu Yanagië
- University of Tokyo, Department of Nuclear Engineering and Management, Graduate School of Engineering, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Soffietti R, Rudà R, Trevisan E. New chemotherapy options for the treatment of malignant gliomas. Anticancer Drugs 2007; 18:621-32. [PMID: 17762390 DOI: 10.1097/cad.0b013e32801476fd] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review focuses on the recent advances in chemotherapy of malignant gliomas, with special emphasis on the most common primary brain tumor in adults, glioblastoma. The demonstration of the superiority of concomitant and adjuvant temozolomide with standard radiotherapy over radiotherapy alone in patients with newly diagnosed glioblastomas by means of phase III international trial has been the major advance in the care of these patients so far. Moreover, patients whose tumors display the hypermethylation of the promoter of the gene for the repairing enzyme O-methylguanine-DMA methyltransferase are most likely to benefit from the combination regimen. The advantage of a postsurgical local administration of carmustine by slow-release polymers ('gliadel wafers') is more modest, and the efficacy and safety of a sequence of carmustine wafers followed by temozolomide combined with radiotherapy remain to be defined. Different DNA repair modulation strategies are being investigated to further improve the results: dose-dense regimens of temozolomide, combination of temozolomide with specific inhibitors of O-methylguanine-DMA methyltransferase and combination of temozolomide with specific inhibitors of base excision repair [poly(ADP-ribose) polymerase inhibitors]. Other developments include the combination of cytotoxic, cytostatic and targeted therapies. Multitargeted compounds that simultaneously affect multiple signaling pathways, such as those involving epidermal growth factor receptor, platelet-derived growth factor receptor and vascular endothelial growth factor receptor, are increasingly employed. In the future, innovative trial designs (factorial and adaptative designs), pretreatment molecular profiling of individual tumors and the adoption of biological end-points (changes in serum tumor markers, measures of target inhibition), in addition to the traditional clinical and radiographic end-points, will be needed to achieve further advances.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Division of Neuro-Oncology, Departments of Neuroscience and Oncology, University and San Giovanni Battista Hospital, Turin, Italy.
| | | | | |
Collapse
|
13
|
Widakowich C, de Azambuja E, Gil T, Cardoso F, Dinh P, Awada A, Piccart-Gebhart M. Molecular targeted therapies in breast cancer: Where are we now? Int J Biochem Cell Biol 2007; 39:1375-87. [PMID: 17543572 DOI: 10.1016/j.biocel.2007.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/16/2007] [Indexed: 12/30/2022]
Abstract
Targeted therapies, in cancer treatment, represent a new generation of drugs that interfere with specific molecular targets (typically proteins) having critical roles to play in tumour growth or progression. The principle of targeted therapy is certainly not new: tamoxifen, a hormonal agent targeted at the estrogen receptor, has been in use for more than 30 years. However, this principle has re-gained significant emphasis with the recent development of new biological agents, such as trastuzumab, which was first approved for the treatment of advanced breast cancer (BC) in 1998. Presently, there are at least three different targeted therapies with well documented activity in advanced BC and all three are now being studied in the adjuvant setting; trastuzumab and bevacizumab are monoclonal antibodies, and lapatinib is a dual inhibitor of HER-1 and HER-2. This paper will review the increasing role of molecular targeted therapies in BC, with a particular focus on those drugs currently being tested in early BC, as well as, on future perspectives.
Collapse
Affiliation(s)
- Christian Widakowich
- Medical Oncology Clinic, Jules Bordet Institute, Rue Heger-Bordet 1, 1000 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The past decades have seen an increase in the survival rates of patients with standard-risk medulloblastoma. Efforts have, therefore, been focused on obtaining better results in the treatment of patients with high-risk tumors. In addition to consolidated therapies, novel approaches such as small molecules, monoclonal antibodies, and antiangiogenic therapies that aim to improve outcomes and quality of life are now available through new breakthroughs in the molecular biology of medulloblastoma. The advent of innovative anticancer drugs tested in brain tumors has important consequences for personalized therapy. Gene expression profiling of medulloblastoma can be used to identify the genes and signaling transduction pathways that are crucial for the tumorigenesis process, thereby revealing both new targets for therapy and sensitive/resistance phenotypes. The interpretation of microarray data for new treatments of patients with high-risk medulloblastoma, as well as other poor prognosis tumors, should be developed through a consensus multidisciplinary approach involving oncologists, neurosurgeons, radiotherapists, biotechnologists, bioinformaticists, and other professionals.
Collapse
Affiliation(s)
- Iacopo Sardi
- Department of Pediatrics, Onco-hematology and Neuro-surgery Units, University of Florence Medical School, A. Meyer Children's Hospital, Florence, Italy.
| | | | | |
Collapse
|
15
|
Abstract
An improved understanding of the molecular characteristics of gliomas has led to the recognition of potential antigen targets and monoclonal antibody (mAb) therapies for these challenging tumors. The design of glioma mAbs--including species, construct, immunoglobulin isotype and conjugate--affects their delivery, efficacy and toxicities. mAbs that are under study for glioma therapy include some mAbs that are currently approved for use in the treatment of other cancers, as well as novel molecules. Although the greatest experience so far is with locally administered, radiolabeled mAbs, systemic unconjugated mAbs are being studied increasingly for glioma treatment. Previous experience with mAbs in other malignancies may provide guidance for their use in the treatment of CNS malignancies.
Collapse
Affiliation(s)
- David E Gerber
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Baltimore, Maryland, USA
| | | |
Collapse
|
16
|
Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 2007; 145:795-811. [DOI: 10.1016/j.neuroscience.2007.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/20/2022]
|
17
|
Abstract
BACKGROUND Gliomas are the most common type of primary brain tumor. Nearly two-thirds of gliomas are highly malignant lesions that account for a disproportionate share of brain tumor-related morbidity and mortality. Despite recent advances, two-year survival for glioblastoma with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. REVIEW SUMMARY Surgery and radiation have been the mainstays of therapy for most glioma patients, but temozolomide chemotherapy has recently been proven to prolong overall survival in patients with glioblastoma. Intriguing data suggests that activity of O6-methylguanine-DNA methyltransferase (MGMT), in tumor cells may predict responsiveness to temozolomide and other alkylating agents. Novel treatment approaches, especially targeted molecular therapies against critical components of glioma signaling pathways, appear promising in preliminary studies. Optimal treatment for patients with low-grade gliomas has yet to be determined. Advances in oligodendroglioma biology have identified loss of chromosomes 1p and 19q as powerful indicators of a favorable prognosis. These same changes may predict response to chemotherapy. CONCLUSIONS Though the prognosis for many patients with gliomas is poor, the last decade produced a number of important advances, some of which have translated directly into survival benefits. Rapid progress in the field of glioma molecular biology continues to identify therapeutic targets and provide hope for the future of this challenging disease.
Collapse
Affiliation(s)
- Andrew D Norden
- Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital and Center For Neuro-Oncology, Dana Farber Brigham and Women's Cancer Center, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
18
|
Abstract
The 'magic bullet' concept of specifically targeting cancer cells at the same time as sparing normal tissues is now proven, as several monoclonal antibodies and targeted small-molecule compounds have been approved for cancer treatment. Both antibodies and small-molecule compounds are therefore promising tools for target-protein-based cancer therapy. We discuss and compare the distinctive properties of these two therapeutic strategies so as to provide a better view for the development of new drugs and the future direction of cancer therapy.
Collapse
Affiliation(s)
- Kohzoh Imai
- Sapporo Medical University, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan.
| | | |
Collapse
|
19
|
Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 2006; 24:1273-80. [PMID: 16525182 DOI: 10.1200/jco.2005.04.7522] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
High-grade gliomas represent a significant source of cancer-related death, and usually recur despite treatment. In this analysis of current brain tumor medicine, we review diagnosis, standard treatment, and emerging therapies for recurrent astrocytomas. Difficulties in interpreting radiographic evidence, especially with regard to differentiating between tumor and necrosis, present a formidable challenge. The most accurate diagnoses come from tissue confirmation of recurrent tumor, but a combination of imaging techniques, such as magnetic resonance spectroscopy imaging, may also be relevant for diagnosis. Repeat resection can prolong life, but repeat irradiation of the brain poses serious risks and results in necrosis of healthy brain tissue; therefore, reirradiation is usually not offered to patients with recurrent tumors. We describe the use of conventional radiotherapy, intensity-modulated radiotherapy, brachytherapy, radiosurgery, and photodynamic therapy for recurrent high-grade glioma. The use of chemotherapy is limited by drug distribution and toxicity, but the development of new drug-delivery techniques such as convection-enhanced delivery, which delivers therapeutic molecules at an effective concentration directly to the brain, may provide a way to reduce systemic exposure to cytotoxic agents. We also discuss targeted therapies designed to inhibit aberrant cell-signaling pathways, as well as new experimental therapies such as immunotherapy. The treatment of this devastating disease has so far been met with limited success, but emerging knowledge of neuroscience and the development of novel therapeutic agents will likely give patients new options and require the neuro-oncology community to redefine clinical trial design and strategy continually.
Collapse
Affiliation(s)
- Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143-0350, USA
| | | | | |
Collapse
|