1
|
Jia F, Kang Y, Wang Z. Case report: A 53-year-old woman with synchronous WHO classification II and IV gliomas. Front Oncol 2024; 14:1308497. [PMID: 38919539 PMCID: PMC11196406 DOI: 10.3389/fonc.2024.1308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Glioma is the most common primary intracranial neoplasm with a relatively poor prognosis. Case presentation Here, we present a unique case of a 53-year-old woman with two histopathologically distinct gliomas at the initial diagnosis. She presented with headaches and left limb weakness before admission, and magnetic resonance imaging (MRI) showed right frontal and basal ganglia area involvement combined with hemorrhage. The patient underwent a navigation-guided craniotomy for tumor removal. Pathological examination revealed the right frontal lobe lesion as a WHO grade II IDH-NOS astrocytoma, but the right parietal lobe lesion was a WHO grade IV IDH-mutant diffuse astrocytoma. Molecular detection of the parietal lesion revealed a point mutation at the R132 locus of the IDH1 gene, no mutation in the TERT promoter, amplification of the epidermal growth factor receptor, and a non-homozygous CDKN2A/B deletion. Discussion In-depth epigenomic analysis and molecular examination revealed that one patient had two different brain tumors, underscoring the importance of performing a comprehensive brain tumor workup. Conclusion This unique case confirms that adjacent astrocytomas may have different molecular pathogenesis and provides novel insights into the development of gliomas.
Collapse
Affiliation(s)
| | | | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
3
|
Copaciu R, Rashidian J, Lloyd J, Yahyabeik A, McClure J, Cummings K, Su Q. Characterization of an IDH1 R132H Rabbit Monoclonal Antibody, MRQ-67, and Its Applications in the Identification of Diffuse Gliomas. Antibodies (Basel) 2023; 12:antib12010014. [PMID: 36810519 PMCID: PMC9944093 DOI: 10.3390/antib12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The current diagnosis of diffuse glioma involves isocitrate dehydrogenase (IDH) mutation testing. Most IDH mutant gliomas carry a G-to-A mutation at IDH1 position 395, resulting in the R132H mutant. R132H immunohistochemistry (IHC), therefore, is used to screen for the IDH1 mutation. In this study, the performance of MRQ-67, a recently generated IDH1 R132H antibody, was characterized in comparison with H09, a frequently used clone. Selective binding was demonstrated by an enzyme-linked immunosorbent assay for MRQ-67 to the R132H mutant, with an affinity higher than that for H09. By Western and dot immunoassays, MRQ-67 was found to bind specifically to the IDH1 R1322H, with a higher capacity than H09. IHC testing with MRQ-67 demonstrated a positive signal in most diffuse astrocytomas (16/22), oligodendrogliomas (9/15), and secondary glioblastomas tested (3/3), but not in primary glioblastomas (0/24). While both clones demonstrated a positive signal with similar patterns and equivalent intensities, H09 exhibited a background stain more frequently. DNA sequencing on 18 samples showed the R132H mutation in all IHC positive cases (5/5), but not in negative cases (0/13). These results demonstrate that MRQ-67 is a high-affinity antibody suitable for specific detection of the IDH1 R132H mutant by IHC and with less background as compared with H09.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Su
- Correspondence: ; Tel.: +1-916-746-8961
| |
Collapse
|
4
|
Khan L, Soliman H, Sahgal A, Perry J, Xu W, Tsao MN. External beam radiation dose escalation for high grade glioma. Cochrane Database Syst Rev 2020; 5:CD011475. [PMID: 32437039 PMCID: PMC7389526 DOI: 10.1002/14651858.cd011475.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in Issue 8, 2016. High grade glioma (HGG) is a rapidly growing brain tumour in the supporting cells of the nervous system, with several subtypes such as glioblastoma (grade IV astrocytoma), anaplastic (grade III) astrocytoma and anaplastic (grade III) oligodendroglioma. Studies have investigated the best strategy to give radiation to people with HGG. Conventional fractionated radiotherapy involves giving a daily radiation dose (called a fraction) of 180 cGy to 200 cGy. Hypofractionated radiotherapy uses higher daily doses, which reduces the overall number of fractions and treatment time. Hyperfractionated radiotherapy which uses a lower daily dose with a greater number of fractions and multiple fractions per day to deliver a total dose at least equivalent to external beam daily conventionally fractionated radiotherapy in the same time frame. The aim is to reduce the potential for late toxicity. Accelerated radiotherapy (dose escalation) refers to the delivery of multiple fractions per day using daily doses of radiation consistent with external beam daily conventionally fractionated radiotherapy doses. The aim is to reduce the overall treatment time; typically, two or three fractions per day may be delivered with a six to eight hour gap between fractions. OBJECTIVES To assess the effects of postoperative external beam radiation dose escalation in adults with HGG. SEARCH METHODS We searched CENTRAL, MEDLINE Ovid and Embase Ovid to August 2019 for relevant randomised phase III trials. SELECTION CRITERIA We included adults with a pathological diagnosis of HGG randomised to the following external beam radiation regimens: daily conventionally fractionated radiotherapy versus no radiotherapy; hypofractionated radiotherapy versus daily conventionally fractionated radiotherapy; hyperfractionated radiotherapy versus daily conventionally fractionated radiotherapy or accelerated radiotherapy versus daily conventionally fractionated radiotherapy. DATA COLLECTION AND ANALYSIS The primary outcomes were overall survival and adverse effects. The secondary outcomes were progression free survival and quality of life. We used the standard methodological procedures expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS Since the last version of this review, we identified no new relevant trials for inclusion. We included 11 randomised controlled trials (RCTs) with 2062 participants and 1537 in the relevant arms for this review. There was an overall survival benefit for people with HGG receiving postoperative radiotherapy compared to the participants receiving postoperative supportive care. For the four pooled RCTs (397 participants), the overall hazard ratio (HR) for survival was 2.01 favouring postoperative radiotherapy (95% confidence interval (CI) 1.58 to 2.55; P < 0.00001; moderate-certainty evidence). Although these trials may not have completely reported adverse effects, they did not note any significant toxicity attributable to radiation. Progression free survival and quality of life could not be pooled due to lack of data. Overall survival was similar between hypofractionated and conventional radiotherapy in five trials (943 participants), where the HR was 0.95 (95% CI 0.78 to 1.17; P = 0.63; very low-certainty evidence. The trials reported that hypofractionated and conventional radiotherapy were well tolerated with mild acute adverse effects. These trials only reported one participant in the hypofractionated arm developing symptomatic radiation necrosis that required surgery. Progression free survival and quality of life could not be pooled due to the lack of data. Overall survival was similar between hypofractionated and conventional radiotherapy in the subset of two trials (293 participants) which included participants aged 60 years and older with glioblastoma. For this category, the HR was 1.16 (95% CI 0.92 to 1.46; P = 0.21; high-certainty evidence). There were two trials which compared hyperfractionated radiotherapy versus conventional radiation and one trial which compared accelerated radiotherapy versus conventional radiation. However, the results could not be pooled. The conventionally fractionated radiotherapy regimens were 4500 cGy to 6000 cGy given in 180 cGy to 200 cGy daily fractions, over five to six weeks. All trials generally included participants with World Health Organization (WHO) performance status from 0 to 2 and Karnofsky performance status of 50 and higher. The risk of selection bias was generally low among these RCTs. The number of participants lost to follow-up for the outcome of overall survival was low. Attrition, performance, detection and reporting bias for the outcome of overall survival was low. There was unclear attrition, performance, detection and reporting bias relating to the outcomes of adverse effects, progression free survival and quality of life. AUTHORS' CONCLUSIONS Postoperative conventional daily radiotherapy probably improves survival for adults with good performance status and HGG compared to no postoperative radiotherapy. Hypofractionated radiotherapy has similar efficacy for survival compared to conventional radiotherapy, particularly for individuals aged 60 years and older with glioblastoma. There are insufficient data regarding hyperfractionation versus conventionally fractionated radiation (without chemotherapy) and for accelerated radiation versus conventionally fractionated radiation (without chemotherapy). There are HGG subsets who have poor prognosis even with treatment (e.g. glioblastoma histology, older age and poor performance status). These HGG individuals with poor prognosis have generally been excluded from randomised trials based on poor performance status. No randomised trial has compared comfort measures or best supportive care with an active intervention using radiotherapy or chemotherapy in these people with poor prognosis. Since the last version of this review, we found no new relevant studies. The search identified three new trials, but all were excluded as none had a conventionally fractionated radiotherapy arm.
Collapse
Affiliation(s)
- Luluel Khan
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - James Perry
- Crolla Endowed Chair of Neuro-Oncology Research, Sunnybrook Health Sciences Centre and Odette Cancer Centre, Toronto, Canada
| | - Wei Xu
- Department of Biostatistics, University of Toronto, Toronto, Canada
| | - May N Tsao
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Kern M, Auer TA, Picht T, Misch M, Wiener E. T2 mapping of molecular subtypes of WHO grade II/III gliomas. BMC Neurol 2020; 20:8. [PMID: 31914945 PMCID: PMC6947951 DOI: 10.1186/s12883-019-1590-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND According to the new WHO classification from 2016, molecular profiles have shown to provide reliable information about prognosis and treatment response. The purpose of our study is to evaluate the diagnostic potential of non-invasive quantitative T2 mapping in the detection of IDH1/2 mutation status in grade II-III gliomas. METHODS Retrospective evaluation of MR examinations in 30 patients with histopathological proven WHO-grade II (n = 9) and III (n = 21) astrocytomas (18 IDH-mutated, 12 IDH-wildtype). Consensus annotation by two observers by use of ROI's in quantitative T2-mapping sequences were performed in all patients. T2 relaxation times were measured pixelwise. RESULTS A significant difference (p = 0,0037) between the central region of IDH-mutated tumors (356,83 ± 114,97 ms) and the IDH-wildtype (199,92 ± 53,13 ms) was found. Furthermore, relaxation times between the central region (322,62 ± 127,41 ms) and the peripheral region (211,1 ± 74,16 ms) of WHO grade II and III astrocytomas differed significantly (p = 0,0021). The central regions relaxation time of WHO-grade II (227,44 ± 80,09 ms) and III gliomas (322,62 ± 127,41 ms) did not differ significantly (p = 0,2276). The difference between the smallest and the largest T2 value (so called "range") is significantly larger (p = 0,0017) in IDH-mutated tumors (230,89 ± 121,11 ms) than in the IDH-wildtype (96,33 ± 101,46 ms). Interobserver variability showed no significant differences. CONCLUSIONS Quantitative evaluation of T2-mapping relaxation times shows significant differences regarding the IDH-status in WHO grade II and III gliomas adding important information regarding the new 2016 World Health Organization (WHO) Classification of tumors of the central nervous system. This to our knowledge is the first study regarding T2 mapping and the IDH1/2 status shows that the mutational status seems to be more important for the appearance on T2 images than the WHO grade.
Collapse
Affiliation(s)
- Maike Kern
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Timo Alexander Auer
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Edzard Wiener
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Kaya Terzi N, Yılmaz İ, Öz AB. The Applicability of Haarlem Integrated Diagnostic System in Diffuse Glial Tumors and Molecular Methods Affecting Prognosis. Balkan Med J 2019; 36:222-228. [PMID: 30592195 PMCID: PMC6636649 DOI: 10.4274/balkanmedj.galenos.2018.2018.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: With the help of genetic studies, it is possible to obtain information about diagnosis and prognosis of glial tumors. Aims: To categorize the cases according to the new World Health Organization Central Nervous System classification by reconsidering the histologic features of oligodendrogliomas, astrocytomas and oligoastrocytomas. We also evaluated whether these genetic features have prognostic significance. Study Design: Diagnostic accuracy study. Methods: Between the years 2011 and 2016, 60 gliomas were examined. Archival material from the Department of Pathology was used for histopathological, immunohistochemical, and molecular analyses. All the cases were classified and graded according to the new 2016 World Health Organization criteria. IDH1 (R132H), alpha thalassemia/mental retardation syndrome, and p53 antibodies were applied immunohistochemically. The 1p/19q status and platelet-derived growth factor receptor-α/CEP4 amplification were evaluated by fluorescence in situ hybridization. After molecular tests, if the diagnosis of oligodendroglioma or astrocytoma is not diagnosed, case should be diagnosed as oligoastrocytoma. Sensitivity, specificity, positive predictive level, negative predictive level, and accuracy rate were evaluated in accordance with the specified threshold levels. Results: Except for 1 case (3.7%), all cases of grade 2 and grade 3 oligoastrocytoma were diagnosed with astrocytoma or oligodendroglioma without any change of grade. Except for 2 case (6.8%), all cases of grade 2 and grade 3 oligodendroglioma were diagnosed oligodendroglioma. All astrocytomas (100%) were given same diagnosis. There is no specific or sensitive test for the diagnosis of oligoastrocytoma. However, 1p/19q codeletion was spesific (100%) and sensitive (100%) for oligodendroglioma. ATRX and p53 mutation showed high spesificity (100% and 95.1% respectively) for diagnosing astrocytoma. Platelet-derived growth factor receptor-α/ CEP4 was not detected in any of the cases. There was association between isocitrate dehydrogenase mutation and 1p/19q loss with longer survival (respectively p=0.147 and p=0.178). Conclusion: In grade 2 and grade 3 glial tumors, pathological diagnosis is not possible only by histological examination. Overall, there was a diagnosis change in 28 cases (46.6%). Especially in cases of oligoastrocytoma, the diagnosis is changed by molecular tests.
Collapse
Affiliation(s)
- Neslihan Kaya Terzi
- Department of Pathology, İstanbul Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - İsmail Yılmaz
- Department of Pathology, İstanbul Sultan Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Ayşim Büge Öz
- Department of Pathology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
7
|
Shen X, Voets NL, Larkin SJ, de Pennington N, Plaha P, Stacey R, McCullagh JSO, Schofield CJ, Clare S, Jezzard P, Cadoux-Hudson T, Ansorge O, Emir UE. A Noninvasive Comparison Study between Human Gliomas with IDH1 and IDH2 Mutations by MR Spectroscopy. Metabolites 2019; 9:E35. [PMID: 30791611 PMCID: PMC6409728 DOI: 10.3390/metabo9020035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
The oncogenes that are expressed in gliomas reprogram particular pathways of glucose, amino acids, and fatty acid metabolism. Mutations in isocitrate dehydrogenase genes (IDH1/2) in diffuse gliomas are associated with abnormally high levels of 2-hydroxyglutarate (2-HG) levels. The aim of this study was to determine whether metabolic reprogramming associated with IDH mutant gliomas leads to additional ¹H MRS-detectable differences between IDH1 and IDH2 mutations, and to identify metabolites correlated with 2-HG. A total of 21 glioma patients (age= 37 ± 11, 13 males) were recruited for magnetic resonance spectroscopy (MRS) using semi-localization by adiabatic selective refocusing pulse sequence at an ultra-high-field (7T). For 20 patients, the tumor mutation subtype was confirmed by immunohistochemistry and DNA sequencing. LCModel analysis was applied for metabolite quantification. A two-sample t-test was used for metabolite comparisons between IDH1 (n = 15) and IDH2 (n = 5) mutant gliomas. The Pearson correlation coefficients between 2-HG and associated metabolites were calculated. A Bonferroni correction was applied for multiple comparison. IDH2 mutant gliomas have a higher level of 2-HG/tCho (total choline=phosphocholine+glycerylphosphorylcholine) (2.48 ± 1.01vs.0.72 ± 0.38, Pc < 0.001) and myo-Inositol/tCho (2.70 ± 0.90 vs. 1.46 ± 0.51, Pc = 0.011) compared to IDH1 mutation gliomas. Associated metabolites, myo-Inositol and glucose+taurine were correlated with 2-HG levels. These results show the improved characterization of the metabolic pathways in IDH1 and IDH2 gliomas for precision medicine.
Collapse
Affiliation(s)
- Xin Shen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Sarah J Larkin
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Nick de Pennington
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK.
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK.
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK.
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.
| | - Stuart Clare
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Tom Cadoux-Hudson
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK.
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Uzay E Emir
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Bogdańska MU, Bodnar M, Piotrowska MJ, Murek M, Schucht P, Beck J, Martínez-González A, Pérez-García VM. A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications. PLoS One 2017; 12:e0179999. [PMID: 28763450 PMCID: PMC5538650 DOI: 10.1371/journal.pone.0179999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/07/2017] [Indexed: 01/28/2023] Open
Abstract
Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs, WHO grade III and IV gliomas). In this paper we propose a mathematical model describing the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two cellular populations with transitions between them being driven by the tumour microenvironment transformation occurring when the tumour cell density grows beyond a critical level. We show that the proposed model describes real patient data well. We discuss the relationship between patient prognosis and model parameters. We approximate tumour radius and velocity before malignant transformation as well as estimate the onset of this process.
Collapse
Affiliation(s)
- Magdalena U. Bogdańska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
- Departamento de Matemáticas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Marek Bodnar
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Monika J. Piotrowska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Michael Murek
- Universitätsklinik für Neurochirurgie, Bern University Hospital, Bern, Switzerland
| | - Philippe Schucht
- Universitätsklinik für Neurochirurgie, Bern University Hospital, Bern, Switzerland
| | - Jürgen Beck
- Universitätsklinik für Neurochirurgie, Bern University Hospital, Bern, Switzerland
| | | | | |
Collapse
|
9
|
Khan L, Soliman H, Sahgal A, Perry J, Xu W, Tsao MN. External beam radiation dose escalation for high grade glioma. Cochrane Database Syst Rev 2016:CD011475. [PMID: 27541334 DOI: 10.1002/14651858.cd011475.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The incidence of high grade glioma (HGG) is approximately 5 per 100,000 person-years in Europe and North America. OBJECTIVES To assess the effects of postoperative external beam radiation dose escalation in adults with HGG. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 9), MEDLINE (1977 to October 2015) and Embase (1980 to end October 2015) for relevant randomised phase III trials. SELECTION CRITERIA We included adults with a pathological diagnosis of HGG randomised to the following external beam radiation regimens.1. Daily conventionally fractionated radiation therapy versus no radiation therapy.2. Hypofractionated radiation therapy versus daily conventionally fractionated radiation therapy.3. Hyperfractionated radiation therapy versus daily conventionally fractionated radiation therapy.4. Accelerated radiation therapy versus daily conventionally fractionated radiation therapy. DATA COLLECTION AND ANALYSIS The primary outcomes were overall survival and adverse effects. The secondary outcomes were progression-free survival and quality of life. We used the standard methodological procedures expected by Cochrane. We used the GRADE approach, as outlined by Cochrane, to interpret the overall quality of the evidence from included studies. MAIN RESULTS We included 11 randomised controlled trials (RCTs) with a total of 2062 participants and 1537 in the relevant arms for this review. There was an overall survival benefit for HGG participants receiving postoperative radiotherapy compared to the participants receiving postoperative supportive care. For the four pooled RCTs (397 participants), the overall hazard ratio (HR) for survival was 2.01 (95% confidence interval (CI) 1.58 to 2.55, P < 0.00001), moderate GRADE quality evidence favouring postoperative radiotherapy. Although these trials may not have completely reported adverse effects, they did not note any significant toxicity attributable to radiation. Progression free survival and quality of life could not be pooled due to lack of data.Overall survival was similar between hypofractionated versus conventional radiotherapy in five trials (943 participants), where the HR was 0.95 (95% CI 0.78 to 1.17, P = 0.63), very low GRADE quality evidence. The trials reported that hypofractionated and conventional radiotherapy were well tolerated with mild acute adverse effects. These trials only reported one patient in the hypofractionated arm developing symptomatic radiation necrosis that required surgery. Progression free survival and quality of life could not be pooled due to the lack of data.Overall survival was also similar between hypofractionated versus conventional radiotherapy in the subset of two trials (293 participants) which included 60 years and older participants with glioblastoma. For this category, the HR was 1.16 (95% CI 0.92 to 1.46, P = 0.21), high GRADE quality evidence.There were two trials which compared hyperfractionated radiation therapy versus conventional radiation and one trial which compared accelerated radiation therapy versus conventional radiation. However, the results could not be pooled.The conventionally fractionated radiation therapy regimens were 4500 to 6000 cGy given in 180 to 200 cGy daily fractions, over 5 to 6 weeks.All these trials generally included participants with World Health Organization (WHO) performance status from 0 to 2 and Karnofsky performance status of 50 and higher.The risk of selection bias was generally low among these randomized trials. The number of participants lost to follow-up for the outcome of overall survival was low. Attrition, performance, detection and reporting bias for the outcome of overall survival was low. There was unclear attrition, performance, detection and reporting bias relating to the outcomes of adverse effects, progression free survival and quality of life. AUTHORS' CONCLUSIONS Postoperative conventional daily radiotherapy improves survival for adults with good performance status and HGG as compared to no postoperative radiotherapy.Hypofractionated radiation therapy has similar efficacy for survival as compared to conventional radiotherapy, particularly for individuals aged 60 and older with glioblastoma.There is insufficient data regarding hyperfractionation versus conventionally fractionated radiation (without chemotherapy) and for accelerated radiation versus conventionally fractionated radiation (without chemotherapy).There are HGG subsets who have poor prognosis even with treatment (e.g. glioblastoma histology, older age and poor performance status). These poor prognosis HGG individuals have generally been excluded from the randomised trials based on poor performance status. No randomised trial has compared comfort measures or best supportive care with an active intervention using radiotherapy or chemotherapy in these poor prognosis patients.
Collapse
Affiliation(s)
- Luluel Khan
- Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5
| | | | | | | | | | | |
Collapse
|
10
|
Molecular Diagnostic and Prognostic Subtyping of Gliomas in Tunisian Population. Mol Neurobiol 2016; 54:2381-2394. [PMID: 26957305 DOI: 10.1007/s12035-016-9805-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
It has become increasingly evident that morphologically similar gliomas may have distinct clinical phenotypes arising from diverse genetic signatures. To date, glial tumours from the Tunisian population have not been investigated. To address this, we correlated the clinico-pathology with molecular data of 110 gliomas by a combination of HM450K array, MLPA and TMA-IHC. PTEN loss and EGFR amplification were distributed in different glioma histological groups. However, 1p19q co-deletion and KIAA1549:BRAF fusion were, respectively, restricted to Oligodendroglioma and Pilocytic Astrocytoma. CDKN2A loss and EGFR overexpression were more common within high-grade gliomas. Furthermore, survival statistical correlations led us to identify Glioblastoma (GB) prognosis subtypes. In fact, significant lower overall survival (OS) was detected within GB that overexpressed EGFR and Cox2. In addition, IDH1R132H mutation seemed to provide a markedly survival advantage. Interestingly, the association of IDHR132H mutation and EGFR normal status, as well as the association of differentiation markers, defined GB subtypes with good prognosis. By contrast, poor survival GB subtypes were defined by the combination of PTEN loss with PDGFRa expression and/or EGFR amplification. Additionally, GB presenting p53-negative staining associated with CDKN2A loss or p21 positivity represented a subtype with short survival. Thus, distinct molecular subtypes with individualised prognosis were identified. Interestingly, we found a unique histone mutation in a poor survival young adult GB case. This tumour exceptionally associated the H3F3A G34R mutation and MYCN amplification as well as 1p36 loss and 10q loss. Furthermore, by exhibiting a remarkable methylation profile, it emphasised the oncogenic power of G34R mutation connecting gliomagenesis and chromatin regulation.
Collapse
|