1
|
Wu TM, Liu JB, Liu Y, Shi Y, Li W, Wang GR, Ma YS, Fu D. Power and Promise of Next-Generation Sequencing in Liquid Biopsies and Cancer Control. Cancer Control 2021; 27:1073274820934805. [PMID: 32806937 PMCID: PMC7791471 DOI: 10.1177/1073274820934805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional methods of cancer treatment are usually based on the morphological
and histological diagnosis of tumors, and they are not optimized according to
the specific situation. Precision medicine adjusts the existing treatment
regimen based on the patient’s genomic information to make it most suitable for
patients. Detection of genetic mutations in tumors is the basis of precise
cancer medicine. Through the analysis of genetic mutations in patients with
cancer, we can tailor the treatment plan for each patient with cancer to
maximize the curative effect, minimize damage to healthy tissues, and optimize
resources. In recent years, next-generation sequencing technology has developed
rapidly and has become the core technology of precise targeted therapy and
immunotherapy for cancer. From early cancer screening to treatment guidance for
patients with advanced cancer, liquid biopsy is increasingly used in cancer
management. This is as a result of the development of better noninvasive,
repeatable, sensitive, and accurate tools used in early screening, diagnosis,
evaluation, and monitoring of patients. Cell-free DNA, which is a new
noninvasive molecular pathological detection method, often carries
tumor-specific gene changes. It plays an important role in optimizing treatment
and evaluating the efficacy of different treatment options in clinical trials,
and it has broad clinical applications.
Collapse
Affiliation(s)
- Ting-Miao Wu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Yi Shi
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Gao-Ren Wang
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Da Fu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|