1
|
da Costa AAS, Oliveira SR, Tavares TS, Meirelles DP, da Silva EV, da Silva ATF, León JE, Cardoso SV, de Aguiar MCF, da Silva TA, Caldeira PC. Contribution of HPV Status for Neutrophil Extracellular Traps Release in Oropharyngeal Cancer. J Oral Pathol Med 2025; 54:57-64. [PMID: 39581629 DOI: 10.1111/jop.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Oropharyngeal squamous cell carcinoma (OP-SCC) represents a public health problem and human papillomavirus (HPV) is one of the risk factors. Neutrophil extracellular traps (NET) are meshes of DNA strands and granule proteins. NET has been identified in diverse cancers, whether associated with viruses or not. However, there is no information on NET in OP-SCC. We aimed to evaluate the NET release by neutrophils in the OP-SCC microenvironment, stratified by HPV status. METHODS This cross-sectional study analyzed OP-SCC biopsy specimens diagnosed from 1997 to 2021. HPV status was determined by p16 immunohistochemistry and "in situ" hybridization. Neutrophils were detected by CD66b immunohistochemistry. Immunofluorescence was used to identify NET by co-localization of myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit). Bivariate statistics, Kaplan-Meier survival analysis, and the log-rank test were performed. RESULTS HPV-positive and HPV-negative OP-SCC had similar CD66b + neutrophil infiltration (p > 0.05), but the release of NET was significantly increased in HPV-positive compared to HPV-negative OP-SCC samples (p < 0.05). Overall survival was not impacted by NET indexes (p > 0.05). CONCLUSION The presence of HPV may stimulate NET release in the OP-SCC microenvironment.
Collapse
Affiliation(s)
- Adriana Aparecida Silva da Costa
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Thalita Soares Tavares
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pereira Meirelles
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Evânio Vilela da Silva
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, School of Dentistry, Universidade de São Paulo (USP). Av. do Café - Subsetor Oeste, São Paulo, Brazil
| | - Anderson Tangerino Ferreira da Silva
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, School of Dentistry, Universidade de São Paulo (USP). Av. do Café - Subsetor Oeste, São Paulo, Brazil
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, School of Dentistry, Universidade de São Paulo (USP). Av. do Café - Subsetor Oeste, São Paulo, Brazil
| | - Sérgio Vitorino Cardoso
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Universidade Federal de Uberlândia (UFU). R. República Do Piratini, Uberlândia, Minas Gerais, Brazil
| | - Maria Cássia Ferreira de Aguiar
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida da Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia Carlos Caldeira
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Gao P, Zhou J, Sun L, Liu D. Neutrophil Extracellular Traps in Oral Diseases. Oral Dis 2024. [PMID: 39530338 DOI: 10.1111/odi.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To summarize the current knowledge of the neutrophil extracellular traps (NETs) and its critical role in various oral diseases. METHODS We reviewed the recent research on NETs through PubMed and Web of Science. An analysis of recent research results was summarized from three aspects: NETs induction and formation, functions of NETs, and NETs in oral diseases. RESULTS The relationship between neutrophils and NETs is critical to the body's defense against microbial invasion. NETs can effectively combat pathogens with an anti-inflammatory effect and meanwhile it can contribute to inflammation. Moreover, it can synergize with other immune cells to respond to stimuli, such as pathogens, host-derived mediators, and drugs. It was revealed that NETs play different roles to influence various oral diseases like periodontitis, endodontic infection, oral mucosal diseases, maxillofacial tumors, and many other oral diseases. CONCLUSION The balance between the protective and potentially harmful effects of NETs is a key factor in determining the outcome of infections and inflammatory responses. The role of NETs in oral diseases needs to be further studied to enable better understanding of its role in the different oral diseases.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Periodontology, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
| | - Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Dayong Liu
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Zhang L, Hu Z, Yang L, Liu T, Xun J, Zhang Q, Wang X, Gao H, Jin Z. Saikosaponin a promotes neutrophil extracellular trap formation and bactericidal activity. Nat Prod Res 2024:1-8. [PMID: 38635418 DOI: 10.1080/14786419.2024.2343918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to investigate the effects of SSa, one of the major triterpenoid saponins extracted from Radix bupleuri, on neutrophil extracellular trap (NET) formation and the mechanism associated with this process. Using Sytox green and immunofluorescence assays, we found SSa rapidly induced NET formation, which depended on NADPH oxidase (NOX)-independent ROS production and autophagy. Pharmacologic inhibitor studies indicated that ERK and PI3K/AKT signalling were also required for SSa-induced NET formation, whereas protein arginine deiminase 4 (PAD4) was not required. Furthermore, we found that SSa promoted neutrophil bactericidal activity mainly through NET formation. Based on flow cytometry and the Cell Counting Kit-8 (CCK-8) assays, the results demonstrated that SSa-induced NET formation occurred without neutrophil death. Taken together, these findings indicated that SSa could be a potential natural product to boost innate immune defense against pathogen attack via NET formation.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zhengwei Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jing Xun
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Haihe Hospital, Tianjin University, Tianjin, China
| | - Hejun Gao
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongkui Jin
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Siquara da Rocha LDO, de Morais EF, de Oliveira LQR, Barbosa AV, Lambert DW, Gurgel Rocha CA, Coletta RD. Exploring beyond Common Cell Death Pathways in Oral Cancer: A Systematic Review. BIOLOGY 2024; 13:103. [PMID: 38392321 PMCID: PMC10886582 DOI: 10.3390/biology13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common and lethal type of head and neck cancer in the world. Variable response and acquisition of resistance to traditional therapies show that it is essential to develop novel strategies that can provide better outcomes for the patient. Understanding of cellular and molecular mechanisms of cell death control has increased rapidly in recent years. Activation of cell death pathways, such as the emerging forms of non-apoptotic programmed cell death, including ferroptosis, pyroptosis, necroptosis, NETosis, parthanatos, mitoptosis and paraptosis, may represent clinically relevant novel therapeutic opportunities. This systematic review summarizes the recently described forms of cell death in OSCC, highlighting their potential for informing diagnosis, prognosis and treatment. Original studies that explored any of the selected cell deaths in OSCC were included. Electronic search, study selection, data collection and risk of bias assessment tools were realized. The literature search was carried out in four databases, and the extracted data from 79 articles were categorized and grouped by type of cell death. Ferroptosis, pyroptosis, and necroptosis represented the main forms of cell death in the selected studies, with links to cancer immunity and inflammatory responses, progression and prognosis of OSCC. Harnessing the potential of these pathways may be useful in patient-specific prognosis and individualized therapy. We provide perspectives on how these different cell death types can be integrated to develop decision tools for diagnosis, prognosis, and treatment of OSCC.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Everton Freitas de Morais
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Andressa Vollono Barbosa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Daniel W Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK
| | - Clarissa A Gurgel Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propaedeutics, School of Dentistry, Federal University of Bahia, Salvador 40110-909, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil
| | - Ricardo D Coletta
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| |
Collapse
|
5
|
Xi Y, Gao L, Li S, Sun K, Chen P, Cai Z, Ren W, Zhi K. The role of novel programmed cell death in head and neck squamous cell carcinoma: from mechanisms to potential therapies. Front Pharmacol 2023; 14:1228985. [PMID: 37818196 PMCID: PMC10560744 DOI: 10.3389/fphar.2023.1228985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common oral cancer with poor prognosis and for which no targeted therapeutic strategies are currently available. Accumulating evidence has demonstrated that programmed cell death (PCD) is essential in the development of HNSCC as a second messenger. PCD can be categorized into numerous different subroutines: in addition to the two well-known types of apoptosis and autophagy, novel forms of programmed cell death (e.g., necroptosis, pyroptosis, ferroptosis, and NETosis) also serve as key alternatives in tumorigenesis. Cancer cells are not able to avoid all types of cell death simultaneously, since different cell death subroutines follow different regulatory pathways. Herein, we summarize the roles of novel programmed cell death in tumorigenesis and present our interpretations of the molecular mechanisms with a view to the development of further potential therapies.
Collapse
Affiliation(s)
- Yujie Xi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- Experimental Research Centre, China Academy of Chinese Medical Science, Beijing, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Shaming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Peishen Chen
- Department of Stomatology, People’s Hospital of Juxian, Rizhao, China
| | - Zhen Cai
- Department of Stomatology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Zhu H, Chen S, Li R, Cheng Y, Song H, Wu S, Zhong Y, Liu Y, Cao C. Selenium-rich yeast counteracts the inhibitory effect of nanoaluminum on the formation of porcine neutrophil extracellular traps. Res Vet Sci 2023; 161:138-144. [PMID: 37384972 DOI: 10.1016/j.rvsc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Aluminum is widely used in daily life due to its excellent properties. However, aluminum exposure to the environment severely threatens animal and human health. Conversely, selenium (Se) contributes to maintaining the balance of the immune system. Neutrophils exert immune actions in several ways, including neutrophil extracellular traps (NETs) that localize and capture exogenous substances. Despite the recent investigations on the toxic effects of aluminum and its molecular mechanisms, the immunotoxicity of aluminum nanoparticles on pigs and the antagonistic effect of selenium on aluminum toxicity are poorly understood. Here, we treated porcine peripheral blood neutrophils with zymosan for 3 h to induce NETs formation. Then, we investigated the effect of nanoaluminum on NETs formation in pigs and its possible molecular mechanisms. Microscopy observations revealed that NETs formation was inhibited by nanoaluminum. Using a multifunctional microplate reader, the production of extracellular DNA and the burst of reactive oxygen species (ROS) in porcine neutrophils were inhibited by nanoaluminum. Western blot analyses showed that nanoaluminum caused changes in amounts of cellular selenoproteins. After Se supplementation, the production of porcine NETs, the burst of ROS, and selenoprotein levels were restored. This study indicated that nanoaluminum inhibited the zymosan-induced burst of ROS and release of NETs from porcine neutrophils, possibly through the selenoprotein signaling pathway. In contrast, Se supplementation reduced the toxic effects of nanoaluminum and restored NETs formation.
Collapse
Affiliation(s)
- Huquan Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Siqiiu Chen
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Ruobin Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yun Cheng
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Huanni Song
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Shuiling Wu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yueyao Zhong
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/Quality Control Technical Center (Foshan) of National Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/South China Food Safety Research Center, Foshan 528225, Guangdong Province, China
| | - Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China; Foshan University Veterinary Teaching Hospital, Foshan 528225, Guangdong Province, China.
| |
Collapse
|
8
|
Garley M. Unobvious Neutrophil Extracellular Traps Signification in the Course of Oral Squamous Cell Carcinoma: Current Understanding and Future Perspectives. Cancer Control 2023; 30:10732748231159313. [PMID: 36814071 PMCID: PMC9950614 DOI: 10.1177/10732748231159313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Background: The current standards of treatment for oral squamous cell carcinoma (OSCC) include surgery, radiotherapy, and chemotherapy. In recent years, research on the effectiveness of immunotherapy in the treatment of OSCC has also been conducted.Purpose: Studies indicate that nonspecific immune mechanisms involved in the course of the anticancer response also need to be taken into account.Research Design: This review summarizes the results of our research on the active participation of neutrophils, which are previously underestimated, in the antitumor response in the course of OSCC, taking into account the ability of these cells to generate neutrophil extracellular traps (NETs).Results: We proved that the formation of NETs accompanies not only inflammatory changes but also the neoplastic process and that lipopolysaccharide (LPS) or interleukin 17 (IL-17) plays a critical role in inducing the formation of NETs during the OSCC. The greatest achievement of our published findings was the demonstration of the formation and release of NETs from neutrophils cocultured with tumor cells, as well as after stimulation with supernatant from the SCC culture with a PI3K-independent Akt kinase activation mechanism. Moreover, the pioneering achievement of our studies was the localization of NET structures in the tumor tissue, as well as the observation of high concentrations of NET markers in the serum of OSCC patients with low concentrations in the saliva, indicating the differences in the course of immune response between the periphery and the local reactions.Conclusions: The data presented here provide surprising but important information on the role of NETs in the course of OSCC, thus pointing to a promising new direction in the development of management strategies for early noninvasive diagnosis and monitoring of the disease course, and perhaps immunotherapy. Furthermore, this review raises further questions and elaborates on the process of NETosis in cancer.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of
Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Zhao J, Jin J. Neutrophil extracellular traps: New players in cancer research. Front Immunol 2022; 13:937565. [PMID: 36059520 PMCID: PMC9437524 DOI: 10.3389/fimmu.2022.937565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
NETs are chromatin-derived webs extruded from neutrophils as a result of either infection or sterile stimulation using chemicals, cytokines, or microbes. In addition to the classical role that NETs play in innate immunity against infection and injuries, NETs have been implicated extensively in cancer progression, metastatic dissemination, and therapy resistance. The purpose of this review is to describe recent investigations into NETs and the roles they play in tumor biology and to explore their potential as therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of General Surgery, Changsha Hospital Affiliated to Hunan Normal University/The Fourth Hospital of Changsha, Changsha, China
- *Correspondence: Junjie Zhao, ; Jiaqi Jin,
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Junjie Zhao, ; Jiaqi Jin,
| |
Collapse
|
10
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
11
|
De Meo ML, Spicer JD. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol 2022; 57:101595. [DOI: 10.1016/j.smim.2022.101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
|
12
|
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice. Front Oncol 2021; 11:766636. [PMID: 34868992 PMCID: PMC8639597 DOI: 10.3389/fonc.2021.766636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Characterized as a complex of extracellular DNA fibers and granule proteins, neutrophil extracellular traps (NETs) are generated specifically by neutrophils which play a critical role in host defense and immune regulation. NETs have been initially found crucial for neutrophil anti-microbial function. Recent studies suggest that NETs are involved in tumorigenesis and cancer progression. However, the function of NETs in cancer remains unclear, which might be due to the variation of research models and the heterogeneity of cancers. Although most of malignant tumors have similar biological behaviors, significant differences indeed exist in various systems. Malignant tumors of the digestive system cause the most incidence and mortality of cancer worldwide. In this review, we would focus on research developments on NETs in digestive cancers to provide insights on their role in digestive cancer progression and future research directions.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|