1
|
Xin T, Hu F, Xu L, Kong F, Yang H, Li L, Qin A, Bao B, Chen C, Lan J. Association and mediators between the impact of oral health-related quality of life and depression. Oral Dis 2024; 30:4001-4010. [PMID: 38071189 DOI: 10.1111/odi.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 09/03/2024]
Abstract
OBJECTIVES Our research intended to explore the association and mediators (perceived social support and sleep quality) between the impact of oral health-related quality of life (OHRQoL) and depression among Chinese older adults. METHODS A stratified, multi-stage random sampling approach was used in our study. A total of 3896 older individuals aged 60 years and older were included. Process macro 3.5 for SPSS was utilized for testing mediation hypotheses. RESULTS The mean score of the OHRQoL of the elderly was 3.26 ± 7.15. The correlation coefficient between OHRQoL and depression was 0.25 (p < 0.001). Perceived social support (β = 0.009, 95% CI = 0.006, 0.012) and sleep quality (β = 0.073, 95% CI = 0.074, 0.093) mediated the relationship between OHRQoL and depression, respectively. The association between OHRQoL and depression was mediated sequentially by perceived social support and sleep quality (β = 0.004, 95% CI = 0.002, 0.006). CONCLUSIONS The participants reported relatively good OHRQoL. OHRQoL and depression showed a significant positive correlation. The relationship between OHRQoL and depression among Chinese seniors was mediated by perceived social support and sleep quality. Both directly and indirectly, OHRQoL can affect depression.
Collapse
Affiliation(s)
- Tianjiao Xin
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Fangfang Hu
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Lingzhong Xu
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Fanlei Kong
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Haifeng Yang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Lei Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Afei Qin
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Binghong Bao
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Chiqi Chen
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Jing Lan
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
2
|
Ozdemir Y, Nakamoto K, Boivin B, Bullock D, Andrews NA, González-Cano R, Costigan M. Quantification of stimulus-evoked tactile allodynia in free moving mice by the chainmail sensitivity test. Front Pharmacol 2024; 15:1352464. [PMID: 38464715 PMCID: PMC10920263 DOI: 10.3389/fphar.2024.1352464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Chronic pain occurs at epidemic levels throughout the population. Hypersensitivity to touch, is a cardinal symptom of chronic pain. Despite dedicated research for over a century, quantifying this hypersensitivity has remained impossible at scale. To address these issues, we developed the Chainmail Sensitivity Test (CST). Our results show that control mice spend significantly more time on the chainmail portion of the device than mice subject to neuropathy. Treatment with gabapentin abolishes this difference. CST-derived data correlate well with von Frey measurements and quantify hypersensitivity due to inflammation. Our study demonstrates the potential of the CST as a standardized tool for assessing mechanical hypersensitivity in mice with minimal operator input.
Collapse
Affiliation(s)
- Yildirim Ozdemir
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kazuo Nakamoto
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Bruno Boivin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Bullock
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nick A. Andrews
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- In Vivo Scientific Services, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Rafael González-Cano
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs.GRANADA, University of Granada, Granada, Spain
| | - Michael Costigan
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Liang Y, Chen L, Huang Y, Xie L, Liu X, Zhou W, Cao W, Chen Z, Zhong X. Betaine eliminates CFA-induced depressive-like behaviour in mice may be through inhibition of microglia and astrocyte activation and polarization. Brain Res Bull 2024; 206:110863. [PMID: 38145759 DOI: 10.1016/j.brainresbull.2023.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Chronic pain can induce not only nociceptive but also depressive emotions. A previous study demonstrated that betaine, a commonly used nutrient supplement, has an anti-nociceptive effect, but whether betaine can alleviate chronic pain-induced depressive emotion is elusive. Our current study found that betaine administration significantly eliminated complete Freund's adjuvant (CFA)-induced pain-related depressive-like behaviour. Mechanistically, betaine treatment inhibited microglia and astrocyte activation. Furthermore, betaine significantly promoted the transition of microglia from the M1 to the M2 phenotype, as well as the transition of astrocytes from the A1 to the A2 phenotype. Additionally, the release of pro-inflammatory factors such as IL-18, IL-1β and IL-6 and anti-inflammatory factors such as IL-10 in the hippocampus induced by CFA were also reversed by betaine administration. Overall, betaine has therapeutic effects on pain-related depressive-like phenotypes caused by CFA, possibly through altering the polarization of microglia and astrocytes to reduce neuroinflammation.
Collapse
Affiliation(s)
- Yue Liang
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yanmei Huang
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Lihua Xie
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xueqin Liu
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenyan Zhou
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zuyao Chen
- The First Affiliated Hospital, Department of Otorhinolaryngology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
4
|
Wang QQ, Sun QR, Ji XY, Tang Y, Zhang K, Wang XQ, Li HR, Huang XZ, Zhang B. The combined analgesic, sedative, and anti-gastric cancer mechanisms of Tinospora sagittata var. yunnanensis (S. Y. Hu) H. S. Lo based on integrated ethnopharmacological data. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115990. [PMID: 36509262 DOI: 10.1016/j.jep.2022.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE As a Yi medicine for eliminating wind to relieve pain, Tinospora sagittata var. yunnanensis (S. Y. Hu) H. S. Lo (TSY) is widely used to treat sore throat, stomach pain, bone and muscle injuries, and tumors; however, the material basis and mechanism of action remain unclear. AIM OF THE STUDY This study aims to investigate the potential active compounds of TSY and related pharmacological mechanisms against gastric cancer using a multitarget strategy. MATERIALS AND METHODS The main chemical components of TSY were collected through a literature review and database searches. The components were further screened for ADMET properties, and their targets were predicted using network pharmacology (admetSAR) and substructure-drug-target network-based inference (SDTNBI) approaches in silico. The pharmacological mechanism of action of TSY extract for pain relief, sedation, and anti-gastric cancer activities were identified via in vivo and in vitro biochemical analyses. RESULTS Here, 28 chemical components were identified, 7 active compounds were selected, and 75 targets of TSY extract were predicted. A compound-target-disease network topological approach revealed that the predicted targets are highly related to the digestive system and nervous system. Network pharmacology results suggested that the anti-gastric cancer activity of TSY was highly correlated with its analgesic and sedative targets and MAPK. In vivo experiments confirmed that TSY extract not only reduced the number of voluntary activities in the mouse model but also exhibited a synergistic effect on sodium pentobarbital-induced sleep, reduced the number of mice exhibiting writhing responses to acetic acid, and increased the hot plate pain threshold of mice. Thus, TSY extract exhibits good analgesic and sedative effects. The TSY extract inhibited HGC-27 cell proliferation and induced apoptosis by regulating apoptotic proteins (BAX, BCL-2 and BCL-XL) in vitro. CONCLUSIONS TSY exhibits combined analgesic, sedative, and anti-gastric cancer activities.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Qin-Rong Sun
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Xin-Ye Ji
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Xiao-Qin Wang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Hong-Rui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Xiang-Zhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
5
|
LncRNA XR_351665 Contributes to Chronic Pain-Induced Depression by Upregulating DNMT1 via Sponging miR-152-3p. THE JOURNAL OF PAIN 2023; 24:449-462. [PMID: 36257574 DOI: 10.1016/j.jpain.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Chronic pain is frequently comorbid with depression. However, the mechanisms underlying chronic pain-induced depression remain unclear. Here, we found that DNA methyltransferase 1 (DNMT1) was upregulated in the central amygdala (CeA) of spared nerve injury (SNI)-induced chronic pain-depression rats, and knockdown of DNMT1 could improve the depression-like behaviors in SNI rats. Additionally, a panel of differentially expressed lncRNAs, including 38 upregulated and 12 downregulated lncRNAs, were identified by microarray analysis. Bioinformatics analysis suggested that the upregulated lncRNA XR_351665 was the upstream molecule to regulate DNMT1 expression. The knockdown of XR_351665 significantly alleviated the depression-like behaviors in SNI rats, whereas overexpression of XR_351665 induced the depression-like behaviors in naïve rats. Further mechanism-related researches uncovered that XR_351665 functioned as a competing endogenous RNA (ceRNA) to upregulate DNMT1 by competitively sponging miR-152-3p, and subsequently promoted the development of chronic pain-induced depression. Our findings suggest that lncRNA XR_351665 is involved in the development of chronic pain-induced depression by upregulating DNMT1 via sponging miR-152-3p. These data provide novel insight into understanding the pathogenesis of chronic pain-induced depression and identify a potential therapeutic target. PERSPECTIVE: LncRNA XR_351665 in CeA functions as a ceRNA to block the inhibitory effect of miR-152-3p on DNMT1 and contributes to the development of chronic pain-induced depression. These data suggest that manipulation of XR_351665/miR-152-3p/DNMT1 axis may be a potential method to attenuate chronic pain-induced depression.
Collapse
|
6
|
Yang S, Li J, Zhao D, Wang Y, Li W, Li J, Li Z, Wei Z, Yan C, Gui Z, Zhou C. Chronic Conditions, Persistent Pain, and Psychological Distress Among the Rural Older Adults: A Path Analysis in Shandong, China. Front Med (Lausanne) 2021; 8:770914. [PMID: 34796190 PMCID: PMC8593003 DOI: 10.3389/fmed.2021.770914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Psychological distress were found to be associated with chronic conditions and persistent pain. However, few studies explored the underlying pathways between them. This study aimed to analyze the path of chronic conditions and persistent pain on psychological distress through sleep quality and self-rated health. A total of 2,748 rural older people in Shandong, China were included in this study. Path analysis was performed by using Mplus 8.3 to examine the associations between chronic conditions, persistent pain, sleep quality, self-rated health, and psychological distress after adjusting for age, gender, education, and household income. The prevalence of psychological distress among the older adults in this study was 47.49%. Chronic conditions and persistent pain were indirectly associated with psychological distress through six mediating pathways: (1) the path from chronic conditions to psychological distress through sleep quality (β = 0.041, 95%CI: 0.015-0.067) and self-rated health (β = 0.064, 95%CI: 0.038-0.091), respectively, and a chain mediation existed (β = 0.007, 95% CI: 0.000-0.014); (2) the path of persistent pain and psychological distress through sleep quality (β = 0.058, 95% CI: 0.014-0.102) and self-rated health (β = 0.048, 95% CI: 0.000-0.096), respectively, also the chain mediation found (β = 0.009, 95% CI: 0.005-0.014). Psychological distress was associated with chronic conditions and persistent pain through decreased sleep quality and self-rated health among Chinese rural older people. Multi-pronged targeted intervention should be taken for older adults with chronic conditions and persistent pain.
Collapse
Affiliation(s)
- Shijun Yang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dan Zhao
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Wang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhixian Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Wei
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Yan
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Gui
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengchao Zhou
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Committee (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| |
Collapse
|
7
|
Cardenas A, Papadogiannis A, Dimitrov E. The role of medial prefrontal cortex projections to locus ceruleus in mediating the sex differences in behavior in mice with inflammatory pain. FASEB J 2021; 35:e21747. [PMID: 34151467 DOI: 10.1096/fj.202100319rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
8
|
Sun YM, Shen Y, Huang H, Liu Q, Chen C, Ma LH, Wan J, Sun YY, Zhou CH, Wu YQ. Downregulated SIRT1 in the CeA is involved in chronic pain-depression comorbidity. Brain Res Bull 2021; 174:339-348. [PMID: 34245841 DOI: 10.1016/j.brainresbull.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Comorbid chronic pain and depression are increasingly becoming a concerning public problem, but the underlying mechanisms remain unclear. Here, we demonstrate that pain-related depression-like behaviors are induced in a rat model of chronic constriction injury (CCI). Using this model, we found that chronic neuropathic pain decreased the activity and expression of sirtuin 1 (SIRT1, an NAD+-dependent deacetylase) in the central nucleus of the amygdala (CeA). In addition, the pharmacologic activation of SIRT1 in the CeA could alleviate the depression-like behaviors associated with chronic pain while relieving sensory pain. Accordingly, adeno-associated virus (AAV)-mediated SIRT1 overexpression in the CeA produced a positive effect on the easement of chronic pain and comorbid depression. Taken together, these findings highlight the role of SIRT1 in the CeA in chronic pain and depression states and reveal that the upregulation of SIRT1 may be a potential therapy for the treatment of pain-depression comorbidities.
Collapse
Affiliation(s)
- Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Ying Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Lin-Hui Ma
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Jie Wan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yin-Ying Sun
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
9
|
Abstract
BACKGROUND Pain and depression have a high impact on caring for the people who need palliative care, but both of these are neglected compared with the approach for other symptoms encountered by these patients. AREAS OF UNCERTAINTY There are few studies in humans that support the existence of common neural circuits between depression and pain that also explore the use of drugs with effects in both conditions. More knowledge is needed about the relationship of these clinical entities that will lead to the optimization of the treatment and improvement of quality of life. DATA SOURCES We conducted a search in PubMed to identify relevant articles and reviews that have been published in the last 5 years, concerning the topic of common pathways between depression and pain (2014-April 2019). THERAPEUTIC ADVANCES The connections between the 2 clinical entities start at the level of the cortical regions. The hippocampus is the main site of neural changes, modification of the immune system, neuromodulators, neurotransmitters, and signaling pathways implicated in both conditions. Increased levels of peripheral proinflammatory cytokines and neuroinflammatory changes are related to the physiopathology of these entities. Inflammation links depression and pain by altering neural circuits and changes in their common cortical regions. Antidepressants are used to treat depression and chronic, pain but more experimental studies are needed to determine which antidepressant drugs are the most effective in treating the 2 entities. CONCLUSIONS Pharmacological and nonpharmacological interventions targeting cortical changes in pain and depression are promising, but more clinical studies are needed to validate their usefulness.
Collapse
|
10
|
Kang JWM, Mor D, Keay KA. Nerve injury alters restraint-induced activation of the basolateral amygdala in male rats. Brain Struct Funct 2021; 226:1209-1227. [PMID: 33582845 DOI: 10.1007/s00429-021-02235-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
The amygdala is critical for the production of appropriate responses towards emotional or stressful stimuli. It has a characteristic neuronal activation pattern to acute stressors. Chronic pain and acute stress have each been shown to independently modulate the activity of the amygdala. Few studies have investigated the effect of pain or injury, on amygdala activation to acute stress. This study investigated the effects of a neuropathic injury on the activation response of the amygdala to an acute restraint stress. Chronic constriction injury of the right sciatic nerve (CCI) was used to create neuropathic injury and a single brief 15-min acute restraint was used as an emotional/psychological stressor. All rats received cholera toxin B (CTB) retrograde tracer injections into the medial prefrontal cortex (mPFC) to assess if the amygdala to mPFC pathway was specifically regulated by the combination of neuropathic injury and acute stress. To assess differential patterns of activity in amygdala subregions, cFos expression was used as a marker for "acute", restraint triggered neuronal activation, and FosB/ΔFosB expression was used to reveal prolonged neuronal activation/sensitisation triggered by CCI. Restraint resulted in a characteristic increase in cFos expression in the medial amygdala, which was not altered by CCI. Rats with a CCI showed increased cFos expression in the basolateral amygdala (BLA), in response to an acute restraint stress, but not in neurons projecting to the prefrontal cortex. Further, CCI rats showed an increase in FosB/ΔFosB expression which was exclusive to the BLA. This increase likely reflects sensitisation of the BLA as a consequence of nerve injury which may contribute to heightened sensitivity of BLA neurons to acute emotional/ psychological stressors.
Collapse
Affiliation(s)
- James W M Kang
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia. .,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia.
| | - David Mor
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- Faculty of Medicine and Health, School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW, 2006, Australia.,Brain and Mind Centre (M02G), 100 Mallet Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
11
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
12
|
Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ. SIRT1 Decreases Emotional Pain Vulnerability with Associated CaMKIIα Deacetylation in Central Amygdala. J Neurosci 2020; 40:2332-2342. [PMID: 32005763 PMCID: PMC7083291 DOI: 10.1523/jneurosci.1259-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Emotional disorders are common comorbid conditions that further exacerbate the severity and chronicity of chronic pain. However, individuals show considerable vulnerability to the development of chronic pain under similar pain conditions. In this study on male rat and mouse models of chronic neuropathic pain, we identify the histone deacetylase Sirtuin 1 (SIRT1) in central amygdala as a key epigenetic regulator that controls the development of comorbid emotional disorders underlying the individual vulnerability to chronic pain. We found that animals that were vulnerable to developing behaviors of anxiety and depression under the pain condition displayed reduced SIRT1 protein levels in central amygdala, but not those animals resistant to the emotional disorders. Viral overexpression of local SIRT1 reversed this vulnerability, but viral knockdown of local SIRT1 mimicked the pain effect, eliciting the pain vulnerability in pain-free animals. The SIRT1 action was associated with CaMKIIα downregulation and deacetylation of histone H3 lysine 9 at the CaMKIIα promoter. These results suggest that, by transcriptional repression of CaMKIIα in central amygdala, SIRT1 functions to guard against the emotional pain vulnerability under chronic pain conditions. This study indicates that SIRT1 may serve as a potential therapeutic molecule for individualized treatment of chronic pain with vulnerable emotional disorders.SIGNIFICANCE STATEMENT Chronic pain is a prevalent neurological disease with no effective treatment at present. Pain patients display considerably variable vulnerability to developing chronic pain, indicating individual-based molecular mechanisms underlying the pain vulnerability, which is hardly addressed in current preclinical research. In this study, we have identified the histone deacetylase Sirtuin 1 (SIRT1) as a key regulator that controls this pain vulnerability. This study reveals that the SIRT1-CaMKIIaα pathway in central amygdala acts as an epigenetic mechanism that guards against the development of comorbid emotional disorders under chronic pain, and that its dysfunction causes increased vulnerability to the development of chronic pain. These findings suggest that SIRT1 activators may be used in a novel therapeutic approach for individual-based treatment of chronic pain.
Collapse
Affiliation(s)
- Chenghua Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Yuqing Wu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 266061, People's Republic of China
| | - Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Youqin Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
13
|
Li T, Mamillapalli R, Ding S, Chang H, Liu ZW, Gao XB, Taylor HS. Endometriosis alters brain electrophysiology, gene expression and increases pain sensitization, anxiety, and depression in female mice. Biol Reprod 2019; 99:349-359. [PMID: 29425272 DOI: 10.1093/biolre/ioy035] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/05/2018] [Indexed: 11/14/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disorder among reproductive-aged women associated with pelvic pain, anxiety, and depression. Pain is characterized by central sensitization; however, it is not clear if endometriosis leads to increased pain perception or if women with the disease are more sensitive to pain, increasing the detection of endometriosis. Endometriosis was induced in mice and changes in behavior including pain perception, brain electrophysiology, and gene expression were characterized. Behavioral tests revealed that mice with endometriosis were more depressed, anxious and sensitive to pain compared to sham controls. Microarray analyses confirmed by qPCR identified differential gene expression in several regions of brain in mice with endometriosis. In these mice, genes such as Gpr88, Glra3 in insula, Chrnb4, Npas4 in the hippocampus, and Lcn2 in the amygdala were upregulated while Lct, Serpina3n (insula), and Nptx2 (amygdala) were downregulated. These genes are involved in anxiety, locomotion, and pain. Patch clamp recordings in the amygdala were altered in endometriosis mice demonstrating an effect of endometriosis on brain electrophysiology. Endometriosis induced pain sensitization, anxiety, and depression by modulating brain gene expression and electrophysiology; the effect of endometriosis on the brain may underlie pain sensitization and mood disorders reported in women with the disease.
Collapse
Affiliation(s)
- Tian Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheng Ding
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hao Chang
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zhong-Wu Liu
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Bing Gao
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Cai L, He Q, Lu Y, Hu Y, Chen W, Wei L, Hu Y. Comorbidity of Pain and Depression in a Lumbar Disc Herniation Model: Biochemical Alterations and the Effects of Fluoxetine. Front Neurol 2019; 10:1022. [PMID: 31616368 PMCID: PMC6768967 DOI: 10.3389/fneur.2019.01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 11/14/2022] Open
Abstract
Summary of Background Data: Depression is one of the most common comorbidities in patients with chronic low back pain. However, the mechanisms of depression in chronic low back pain patients and the effect of antidepressants on the comorbidity of pain and depression need to be further explored. The establishment of the appropriate animal models and of more effective therapies is critical for this comorbidity. Lumbar disc herniation (LDH) is the most common disease that causes low back pain. The current study examined whether an LDH model shows behavioral and biochemical alterations that are in accordance with the characteristics of the comorbidity of pain and depression and tested the effect of fluoxetine (FLX) on these measures. Objective: The current study examined whether an LDH model showed the behavioral and biochemical alterations that were in accordance with the characteristics of the comorbidity of pain and depression and tested the effect of FLX on these measures. Methods: The LDH animal model was generated by the implantation of the autologous nucleus pulposus on the left L5 nerve root just proximal to the dorsal root ganglion in Wistar rats. Pain intensity was evaluated by mechanical allodynia and thermal hyperalgesia, and changes in depressive behavior were examined by the taste preference and forced swim tests. Hippocampal serotonin (5-HT) levels were measured by liquid chromatography-mass spectrometry, and tumor necrosis factor-α (TNF-α) mRNA was quantified using real-time reverse transcriptase PCR. Results: LDH resulted in chronic pain, which further induced depressive behavior that persisted for 6 weeks after surgery. There were decreased 5-HT concentrations and upregulated TNF-α mRNA levels that were accompanied by behavioral changes. FLX treatment improved depressive behavior and moderately alleviated pain through increased 5-HT concentrations, and inhibited TNF-α mRNA expression. Conclusions: In summary, our studies provide initial evidence that the LDH chronic pain model might serve as a model of the comorbidity of low back pain and depression. The finding that FLX improved depressive behavior and pain through normalized 5-HT concentrations and TNF-α mRNA expression establishes the initial mechanism of the comorbidity of pain and depression.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Qianchao He
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yongjing Lu
- Department of Nuclear Medicine, Minzu Hospital of Guangxi, Nanning, China
| | - Yuying Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Liping Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
15
|
Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain. Pain 2019; 160:805-823. [PMID: 30681984 DOI: 10.1097/j.pain.0000000000001457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stability of local medial prefrontal cortex (mPFC) network activity is believed to be critical for sustaining cognitive processes such as working memory (WM) and decision making. Dysfunction of the mPFC has been identified as a leading cause to WM deficits in several chronic pain conditions; however, the underlying mechanisms remain largely undetermined. Here, to address this issue, we implanted multichannel arrays of electrodes in the prelimbic region of the mPFC and recorded the neuronal activity during a food-reinforced delayed nonmatch to sample (DNMS) task of spatial WM. In addition, we used an optogenetic technique to selectively suppress the activity of excitatory pyramidal neurons that are considered the neuronal substrate for memory retention during the delay period of the behavioral task. Within-subject behavioral performance and pattern of neuronal activity were assessed after the onset of persistent pain using the spared nerve injury model of peripheral neuropathy. Our results show that the nerve lesion caused a disruption in WM and prelimbic spike activity and that this disruption was reversed by the selective inhibition of prelimbic glutamatergic pyramidal neurons during the delay period of the WM task. In spared nerve injury animals, photoinhibition of excitatory neurons improved the performance level and restored neural activity to a similar profile observed in the control animals. In addition, we found that selective inhibition of excitatory neurons does not produce antinociceptive effects. Together, our findings suggest that disruption of balance in local prelimbic networks may be crucial for the neurological and cognitive deficits observed during painful syndromes.
Collapse
|
16
|
Monteiro C, Cardoso-Cruz H, Galhardo V. Animal models of congenital hypoalgesia: Untapped potential for assessing pain-related plasticity. Neurosci Lett 2019; 702:51-60. [DOI: 10.1016/j.neulet.2018.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Gambeta E, Batista MA, Maschio GP, Turnes JDM, Araya EI, Chichorro JG. Anxiety- but not depressive-like behaviors are related to facial hyperalgesia in a model of trigeminal neuropathic pain in rats. Physiol Behav 2018; 191:131-137. [DOI: 10.1016/j.physbeh.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
18
|
Rashedi V, Asadi-Lari M, Foroughan M, Delbari A, Fadayevatan R. Mental Health and Pain in Older Adults: Findings from Urban HEART-2. Community Ment Health J 2017; 53:719-724. [PMID: 28124258 DOI: 10.1007/s10597-017-0082-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/09/2017] [Indexed: 01/11/2023]
Abstract
Pain is an important component of disability problems, and plays a key role in mental health of older adults. This study aims to investigate the relationship between mental health and pain in older adults of Tehran, Iran. This was a cross-sectional study using data on 5326 older adults aged ≥60 years old from a large population-based survey (Urban HEART-2). A multistage cluster random sampling method was used to select the participants in Tehran, Iran, in 2011. General Health Questionnaire (GHQ-28), pain questionnaire, and socioeconomic questionnaires were used to collect the data. A total of 5326 older adults, 3811 (71.6%) married and 2797 (52.5%) female, were included into the study. The mean age of the participants was 68.92 ± 7.02 years. Mean of GHQ-28 scores in the sample was 51.08 ± 10.94, which indicates of a good level of mental health. The majority of the older adults had knee and back pain (more than 50%). Regardless of the chronicity, time, and the mode of reaction to it, knee and back pain were the highly reported pains among the participants. There was a statistically significant difference between two groups of older adults, with and without pain, in terms of GHQ-28 scores. Multiple regression analysis revealed that there was a relationship between mental health and the following factors: pain in head, shoulder, teeth, upper and lower limbs, education, gender, age, and marital status. Whatever the explanation, the relation of lowered health status to pain in all body parts among older people is considerable. This renders this matter as a top priority in health policy making.
Collapse
Affiliation(s)
- Vahid Rashedi
- Iranian Research Center on Aging, Department of Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohsen Asadi-Lari
- Department of Epidemiology, School of Public Health, Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Foroughan
- Iranian Research Center on Aging, Department of Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, Department of Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Fadayevatan
- Iranian Research Center on Aging, Department of Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
19
|
EP 2 receptor antagonism reduces peripheral and central hyperalgesia in a preclinical mouse model of endometriosis. Sci Rep 2017; 7:44169. [PMID: 28281561 PMCID: PMC5345039 DOI: 10.1038/srep44169] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023] Open
Abstract
Endometriosis is an incurable gynecological disorder characterized by debilitating pain and the establishment of innervated endometriosis lesions outside the uterus. In a preclinical mouse model of endometriosis we demonstrated overexpression of the PGE2-signaling pathway (including COX-2, EP2, EP4) in endometriosis lesions, dorsal root ganglia (DRG), spinal cord, thalamus and forebrain. TRPV1, a PGE2-regulated channel in nociceptive neurons was also increased in the DRG. These findings support the concept that an amplification process occurs along the pain neuroaxis in endometriosis. We then tested TRPV1, EP2, and EP4 receptor antagonists: The EP2 antagonist was the most efficient analgesic, reducing primary hyperalgesia by 80% and secondary hyperalgesia by 40%. In this study we demonstrate reversible peripheral and central hyperalgesia in mice with induced endometriosis.
Collapse
|