1
|
Sun LH, Yu L, Chan YH, Chin MH, Lee CP, Liao YH. Combining brief recall and ketamine treatment prevents stress-primed methamphetamine memory reinstatement via heightening mPFC GABA activity. Eur J Pharmacol 2024; 972:176559. [PMID: 38588768 DOI: 10.1016/j.ejphar.2024.176559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
This study aimed to assess whether brief recall of methamphetamine (MA) memory, when combined with ketamine (KE) treatment, may prevent stress-primed MA memory reinstatement. Combining 3-min recall and KE facilitated MA memory extinction and resistance to subsequent stress-primed reinstatement. Such combination also produced glutamate metabotropic receptor 5 (mGluR5) upregulation in animals' medial prefrontal cortex (mPFC) γ-amino-butyric acid (GABA) neuron. Accordingly, chemogenetic methods were employed to bi-directionally modulate mPFC GABA activity. Following brief recall and KE-produced MA memory extinction, intra-mPFC mDlx-Gi-coupled-human-muscarinic-receptor 4 (hM4Di)-infused mice receiving compound 21 (C21) treatment showed eminent stress-primed reinstatement, while their GABA mGluR5 expression seemed to be unaltered. Intra-mPFC mDlx-Gq-coupled-human-muscarinic-receptor 3 (hM3Dq)-infused mice undergoing C21 treatment displayed MA memory extinction and resistance to stress-provoked reinstatement. These results suggest that combining a brief recall and KE treatment and exciting mPFC GABA neuron may facilitate MA memory extinction and resistance to stress-primed recall. mPFC GABA neuronal activity plays a role in mediating brief recall/KE-produced effects on curbing the stress-provoked MA seeking.
Collapse
Affiliation(s)
- Li-Han Sun
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan; Department of Physiology, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan; Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan
| | - Ya-Hsuan Chan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan
| | - Min-Han Chin
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan
| | - Chi-Pin Lee
- Division of Cardiology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan.
| | - Yi-Han Liao
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan; Division of Cardiology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan.
| |
Collapse
|
2
|
Bogler C, Zangrossi A, Miller C, Sartori G, Haynes J. Have you been there before? Decoding recognition of spatial scenes from fMRI signals in precuneus. Hum Brain Mapp 2024; 45:e26690. [PMID: 38703117 PMCID: PMC11069338 DOI: 10.1002/hbm.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.
Collapse
Affiliation(s)
- Carsten Bogler
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Andrea Zangrossi
- Department of General PsychologyUniversity of PadovaPadovaItaly
- Padova Neuroscience Center (PNC)University of PadovaPadovaItaly
| | - Chantal Miller
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | | | - John‐Dylan Haynes
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Max Planck School of CognitionLeipzigGermany
- Berlin Center for Advanced NeuroimagingCharité‐Universitätsmedizin BerlinBerlinGermany
- Clinic of NeurologyCharité‐Universitätsmedizin BerlinBerlinGermany
- Institute of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
- Cluster of Excellence “Science of Intelligence”Berlin Institute of TechnologyBerlinGermany
| |
Collapse
|
3
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
4
|
Schott BH, Soch J, Kizilirmak JM, Schütze H, Assmann A, Maass A, Ziegler G, Sauvage M, Richter A. Inhibitory temporo-parietal effective connectivity is associated with explicit memory performance in older adults. iScience 2023; 26:107765. [PMID: 37744028 PMCID: PMC10514462 DOI: 10.1016/j.isci.2023.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Successful explicit memory encoding is associated with inferior temporal activations and medial parietal deactivations, which are attenuated in aging. Here we used dynamic causal modeling (DCM) of functional magnetic resonance imaging data to elucidate effective connectivity patterns between hippocampus, parahippocampal place area (PPA), and precuneus during encoding of novel visual scenes. In 117 young adults, DCM revealed pronounced activating input from the PPA to the hippocampus and inhibitory connectivity from the PPA to the precuneus during novelty processing, with both being enhanced during successful encoding. This pattern could be replicated in two cohorts (N = 141 and 148) of young and older adults. In both cohorts, older adults selectively exhibited attenuated inhibitory PPA-precuneus connectivity, which correlated negatively with memory performance. Our results provide insight into the network dynamics underlying explicit memory encoding and suggest that age-related differences in memory-related network activity are, at least partly, attributable to altered temporo-parietal neocortical connectivity.
Collapse
Affiliation(s)
- Björn H. Schott
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany
| | - Jasmin M. Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Assmann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | | | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- German Center for Mental Health (DZPG), Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C) Jena-Magdeburg-Halle, Magdeburg, Germany
| |
Collapse
|
5
|
Krenz V, Alink A, Sommer T, Roozendaal B, Schwabe L. Time-dependent memory transformation in hippocampus and neocortex is semantic in nature. Nat Commun 2023; 14:6037. [PMID: 37758725 PMCID: PMC10533832 DOI: 10.1038/s41467-023-41648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Memories undergo a time-dependent neural reorganization, which is assumed to be accompanied by a transformation from detailed to more gist-like memory. However, the nature of this transformation and its underlying neural mechanisms are largely unknown. Here, we report that the time-dependent transformation of memory is semantic in nature, while we find no credible evidence for a perceptual transformation. Model-based MRI analyses reveal time-dependent increases in semantically transformed representations of events in prefrontal and parietal cortices, while specific pattern representations in the anterior hippocampus decline over time. Posterior hippocampal memory reinstatement, in turn, increases over time and is linked to the semantic gist of the original memory, without a statistically significant link to perceptual details. These findings indicate that qualitative changes in memory over time, associated with distinct representational changes in the neocortex and within the hippocampus, reflect a semantic transformation, which may promote the integration of memories into abstract knowledge structures.
Collapse
Affiliation(s)
- Valentina Krenz
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
| | - Arjen Alink
- Department of General Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany.
| |
Collapse
|
6
|
Flanagin VL, Klinkowski S, Brodt S, Graetsch M, Roselli C, Glasauer S, Gais S. The precuneus as a central node in declarative memory retrieval. Cereb Cortex 2023; 33:5981-5990. [PMID: 36610736 DOI: 10.1093/cercor/bhac476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Both, the hippocampal formation and the neocortex are contributing to declarative memory, but their functional specialization remains unclear. We investigated the differential contribution of both memory systems during free recall of word lists. In total, 21 women and 17 men studied the same list but with the help of different encoding associations. Participants associated the words either sequentially with the previous word on the list, with spatial locations on a well-known path, or with unique autobiographical events. After intensive rehearsal, subjects recalled the words during functional magnetic resonance imaging (fMRI). Common activity to all three types of encoding associations was identified in the posterior parietal cortex, in particular in the precuneus. Additionally, when associating spatial or autobiographical material, retrosplenial cortex activity was elicited during word list recall, while hippocampal activity emerged only for autobiographically associated words. These findings support a general, critical function of the precuneus in episodic memory storage and retrieval. The encoding-retrieval repetitions during learning seem to have accelerated hippocampus-independence and lead to direct neocortical integration in the sequentially associated and spatially associated word list tasks. During recall of words associated with autobiographical memories, the hippocampus might add spatiotemporal information supporting detailed scenic and contextual memories.
Collapse
Affiliation(s)
- Virginia L Flanagin
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,IFB-LMU, Dept. of Neurology, Marchioninistr. 15, 81377 München, Germany
| | - Svenja Klinkowski
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Melanie Graetsch
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Carolina Roselli
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Stefan Glasauer
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Moscovitch M, Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev 2022; 11:33. [PMID: 36532709 PMCID: PMC9720899 DOI: 10.12703/r/11-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Systems consolidation has mostly been treated as a neural construct defined by the time-dependent change in memory representation from the hippocampus (HPC) to other structures, primarily the neocortex. Here, we identify and evaluate the explicit and implicit premises that underlie traditional or standard models and theories of systems consolidation based on evidence from research on humans and other animals. We use the principle that changes in neural representation over time and experience are accompanied by corresponding changes in psychological representations, and vice versa, to argue that each of the premises underlying traditional or standard models and theories of systems consolidation is found wanting. One solution is to modify or abandon the premises or theories and models. This is reflected in moderated models of systems consolidation that emphasize the early role of the HPC in training neocortical memories until they stabilize. The fault, however, may lie in the very concept of systems consolidation and its defining feature. We propose that the concept be replaced by one of memory systems reorganization, which does not carry the theoretical baggage of systems consolidation and is flexible enough to capture the dynamic nature of memory from inception to very long-term retention and retrieval at a psychological and neural level. The term "memory system reorganization" implies that memory traces are not fixed, even after they are presumably consolidated. Memories can continue to change as a result of experience and interactions among memory systems across the lifetime. As will become clear, hippocampal training of neocortical memories is only one type of such interaction, and not always the most important one, even at inception. We end by suggesting some principles of memory reorganization that can help guide research on dynamic memory processes that capture corresponding changes in memory at the psychological and neural levels.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Kim H. Attention- versus significance-driven memory formation: Taxonomy, neural substrates, and meta-analyses. Neurosci Biobehav Rev 2022; 138:104685. [PMID: 35526692 DOI: 10.1016/j.neubiorev.2022.104685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Functional neuroimaging data on episodic memory formation have expanded rapidly over the last 30 years, which raises the need for an integrative framework. This study proposes a taxonomy of episodic memory formation to address this need. At the broadest level, the taxonomy distinguishes between attention-driven vs. significance-driven memory formation. The three subtypes of attention-driven memory formation are selection-, fluctuation-, and level-related. The three subtypes of significance-driven memory formation are novelty-, emotion-, and reward-related. Meta-analytic data indicated that attention-driven memory formation affects the functioning of the extra-medial temporal lobe more strongly than the medial temporal lobe (MTL) regions. In contrast, significance-driven memory formation affects the functioning of the MTL more strongly than the extra-MTL regions. This study proposed a model in which attention has a stronger impact on the formation of neocortical traces than hippocampus/MTL traces, whereas significance has a stronger impact on the formation of hippocampus/MTL traces than neocortical traces. Overall, the taxonomy and model provide an integrative framework in which to place diverse encoding-related findings into a proper perspective.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, Republic of Korea.
| |
Collapse
|
9
|
Mofrad MH, Gilmore G, Koller D, Mirsattari SM, Burneo JG, Steven DA, Khan AR, Suller Marti A, Muller L. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load. eLife 2022; 11:75769. [PMID: 35766286 PMCID: PMC9242645 DOI: 10.7554/elife.75769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep is generally considered to be a state of large-scale synchrony across thalamus and neocortex; however, recent work has challenged this idea by reporting isolated sleep rhythms such as slow oscillations and spindles. What is the spatial scale of sleep rhythms? To answer this question, we adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves in high-noise settings for analysis of neural recordings in sleep. We then studied sleep spindles in non-human primate electrocorticography (ECoG), human electroencephalogram (EEG), and clinical intracranial electroencephalogram (iEEG) recordings in the human. Within each recording type, we find widespread spindles occur much more frequently than previously reported. We then analyzed the spatiotemporal patterns of these large-scale, multi-area spindles and, in the EEG recordings, how spindle patterns change following a visual memory task. Our results reveal a potential role for widespread, multi-area spindles in consolidation of memories in networks widely distributed across primate cortex. The brain processes memories as we sleep, generating rhythms of electrical activity called ‘sleep spindles’. Sleep spindles were long thought to be a state where the entire brain was fully synchronized by this rhythm. This was based on EEG recordings, short for electroencephalogram, a technique that uses electrodes on the scalp to measure electrical activity in the outermost layer of the brain, the cortex. But more recent intracranial recordings of people undergoing brain surgery have challenged this idea and suggested that sleep spindles may not be a state of global brain synchronization, but rather localised to specific areas. Mofrad et al. sought to clarify the extent to which spindles co-occur at multiple sites in the brain, which could shed light on how networks of neurons coordinate memory storage during sleep. To analyse highly variable brain wave recordings, Mofrad et al. adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves. The resulting algorithm, designed to more sensitively detect spindles amongst other brain activity, was then applied to a range of sleep recordings from humans and macaque monkeys. The analyses revealed that widespread and complex patterns of spindle rhythms, spanning multiple areas in the cortex of the brain, actually appear much more frequently than previously thought. This finding was consistent across all the recordings analysed, even recordings under the skull, which provide the clearest window into brain circuits. Further analyses found that these multi-area spindles occurred more often in sleep after people had completed tasks that required holding many visual scenes in memory, as opposed to control conditions with fewer visual scenes. In summary, Mofrad et al. show that neuroscientists had previously not appreciated the complex and dynamic patterns in this sleep rhythm. These patterns in sleep spindles may be able to adapt based on the demands needed for memory storage, and this will be the subject of future work. Moreover, the findings support the idea that sleep spindles help coordinate the consolidation of memories in brain circuits that stretch across the cortex. Understanding this mechanism may provide insights into how memory falters in aging and sleep-related diseases, such as Alzheimer’s disease. Lastly, the algorithm developed by Mofrad et al. stands to be a useful tool for analysing other rhythmic waveforms in noisy recordings.
Collapse
Affiliation(s)
- Maryam H Mofrad
- Department of Mathematics, Western University, London, Canada.,Brain and Mind Institute, Western University, London, Canada
| | - Greydon Gilmore
- Brain and Mind Institute, Western University, London, Canada.,Department of Biomedical Engineering, Western University, London, Canada
| | - Dominik Koller
- Advanced Concepts Team, European Space Agency, Noordwijk, Netherlands
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Psychology, Western University, London, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Ali R Khan
- Brain and Mind Institute, Western University, London, Canada.,Department of Biomedical Engineering, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Ana Suller Marti
- Brain and Mind Institute, Western University, London, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Lyle Muller
- Department of Mathematics, Western University, London, Canada.,Brain and Mind Institute, Western University, London, Canada
| |
Collapse
|
10
|
Krenz V, Sommer T, Alink A, Roozendaal B, Schwabe L. Noradrenergic arousal after encoding reverses the course of systems consolidation in humans. Nat Commun 2021; 12:6054. [PMID: 34663784 PMCID: PMC8523710 DOI: 10.1038/s41467-021-26250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
It is commonly assumed that episodic memories undergo a time-dependent systems consolidation process, during which hippocampus-dependent memories eventually become reliant on neocortical areas. Here we show that systems consolidation dynamics can be experimentally manipulated and even reversed. We combined a single pharmacological elevation of post-encoding noradrenergic activity through the α2-adrenoceptor antagonist yohimbine with fMRI scanning both during encoding and recognition testing either 1 or 28 days later. We show that yohimbine administration, in contrast to placebo, leads to a time-dependent increase in hippocampal activity and multivariate encoding-retrieval pattern similarity, an indicator of episodic reinstatement, between 1 and 28 days. This is accompanied by a time-dependent decrease in neocortical activity. Behaviorally, these neural changes are linked to a reduced memory decline over time after yohimbine intake. These findings indicate that noradrenergic activity shortly after encoding may alter and even reverse systems consolidation in humans, thus maintaining vividness of memories over time.
Collapse
Affiliation(s)
- Valentina Krenz
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
| | - Tobias Sommer
- University Medical Centre Hamburg-Eppendorf, Department of Systems Neuroscience, Martinistraße 52, 20246, Hamburg, Germany
| | - Arjen Alink
- University Medical Centre Hamburg-Eppendorf, Department of Systems Neuroscience, Martinistraße 52, 20246, Hamburg, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany.
| |
Collapse
|
11
|
Brodt S, Born J. Ripples for recall: The hippocampus constructing the context? Neuron 2021; 109:2646-2648. [PMID: 34473952 DOI: 10.1016/j.neuron.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this issue of Neuron, Norman et al. (2021) show that contrary to classical systems consolidation theories, hippocampal ripples orchestrate recall of both autobiographical and semantic memories. Similarity of ripple patterns furthermore suggests a semantization process as autobiographical memories age.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tuebingen, Tuebingen, Germany.
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tuebingen, Tuebingen, Germany; Center for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|