1
|
Lin Y, Atad DA, Zanesco AP. Using Electroencephalography to Advance Mindfulness Science: A Survey of Emerging Methods and Approaches. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00280-5. [PMID: 39369988 DOI: 10.1016/j.bpsc.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Throughout the brief history of contemplative neuroscience, electroencephalography (EEG) has been a valuable and enduring methodology used to elucidate the neural correlates and mechanisms of mindfulness. In this review, we provide a reminder that longevity should not be conflated with obsoletion and that EEG continues to offer exceptional promise for addressing key questions and challenges that pervade the field today. Toward this end, we first outline the unique advantages of EEG from a research strategy and experimental design perspective, then highlight an array of new sophisticated data analytic approaches and translational paradigms. Along the way, we provide illustrative examples from our own work and the broader literature to showcase how these innovations can be leveraged to spark new insights and stimulate progress across both basic science and translational applications of mindfulness. Ultimately, we argue that EEG still has much to contribute to contemplative neuroscience, and we hope to solicit the interest of other investigators to make full use of its capabilities in service of maximizing its potential within the field.
Collapse
Affiliation(s)
- Yanli Lin
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas.
| | - Daniel A Atad
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel; Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel; Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa, Israel
| | - Anthony P Zanesco
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
2
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Violante IR, Okyere P. Can neurotechnology revolutionize cognitive enhancement? PLoS Biol 2024; 22:e3002831. [PMID: 39471132 PMCID: PMC11521288 DOI: 10.1371/journal.pbio.3002831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
The development and implementation of neurotechnology for cognitive enhancement could spearhead a new wave of innovation in the information age. However, we argue here that this will only happen with a more fundamental understanding of human brain function.
Collapse
Affiliation(s)
- Ines R. Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Prince Okyere
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
4
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Lawn T, Giacomel A, Martins D, Veronese M, Howard M, Turkheimer FE, Dipasquale O. Normative modelling of molecular-based functional circuits captures clinical heterogeneity transdiagnostically in psychiatric patients. Commun Biol 2024; 7:689. [PMID: 38839931 PMCID: PMC11153627 DOI: 10.1038/s42003-024-06391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Advanced methods such as REACT have allowed the integration of fMRI with the brain's receptor landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly, normative modelling has allowed translational neuroscience to move beyond group-average differences and characterise deviations from health at an individual level. Here, we bring these methods together for the first time. We used REACT to create functional networks enriched with the main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative models of these networks to capture functional connectivity deviations in patients with schizophrenia, bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations from normality across groups, but these could be mapped into a common space linking constellations of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for developing novel biomarkers that characterise molecular- and systems-level dysfunction at the individual level, facilitating the transition towards mechanistically targeted treatments.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Research & Development Advanced Applications, Olea Medical, La Ciotat, France.
| |
Collapse
|
6
|
Coronel‐Oliveros C, Gómez RG, Ranasinghe K, Sainz‐Ballesteros A, Legaz A, Fittipaldi S, Cruzat J, Herzog R, Yener G, Parra M, Aguillon D, Lopera F, Santamaria‐Garcia H, Moguilner S, Medel V, Orio P, Whelan R, Tagliazucchi E, Prado P, Ibañez A. Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling. Alzheimers Dement 2024; 20:3228-3250. [PMID: 38501336 PMCID: PMC11095480 DOI: 10.1002/alz.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.
Collapse
Affiliation(s)
- Carlos Coronel‐Oliveros
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
| | - Raúl Gónzalez Gómez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Center for Social and Cognitive NeuroscienceSchool of Psychology, Universidad Adolfo IbáñezSantiagoChile
| | - Kamalini Ranasinghe
- Memory and Aging CenterDepartment of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
| | - Gorsev Yener
- Izmir University of Economics, Faculty of Medicine, Fevzi Çakmak, Balçova/İzmirSakaryaTurkey
- Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, KonakAlsancakTurkey
| | - Mario Parra
- School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowScotland
| | - David Aguillon
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Francisco Lopera
- Neuroscience Research Group, University of AntioquiaBogotáColombia
| | - Hernando Santamaria‐Garcia
- Pontificia Universidad Javeriana, PhD Program of NeuroscienceBogotáColombia
- Hospital Universitario San Ignacio, Center for Memory and Cognition IntellectusBogotáColombia
| | - Sebastián Moguilner
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Brain and Mind Centre, The University of SydneySydneyNew South WalesAustralia
- Department of NeuroscienceUniversidad de Chile, IndependenciaSantiagoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV)Universidad de ValparaísoValparaísoChile
- Instituto de NeurocienciaFacultad de Ciencias, Universidad de Valparaíso, Playa AnchaValparaísoChile
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Buenos Aires Physics Institute and Physics DepartmentUniversity of Buenos Aires, Intendente Güiraldes 2160 – Ciudad UniversitariaBuenos AiresArgentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la RehabilitaciónUniversidad San Sebastián, Región MetropolitanaSantiagoChile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo Ibáñez, PeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University of California San Francisco (UCSFA)San FranciscoCaliforniaUSA
- Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos AiresVictoriaArgentina
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| |
Collapse
|
7
|
Keskin-Gokcelli D, Kizilates-Evin G, Eroglu-Koc S, Oguz K, Eraslan C, Kitis O, Gonul AS. The effect of emotional faces on reward-related probability learning in depressed patients. J Affect Disord 2024; 351:184-193. [PMID: 38286231 DOI: 10.1016/j.jad.2024.01.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/30/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Existing research indicates that individuals with Major Depressive Disorder (MDD) exhibit a bias toward salient negative stimuli. However, the impact of such biased stimuli on concurrent cognitive and affective processes in individuals with depression remains inadequately understood. This study aimed to investigate the effects of salient environmental stimuli, specifically emotional faces, on reward-associated processes in MDD. METHODS Thirty-three patients with recurrent MDD and thirty-two healthy controls (HC) matched for age, sex, and education were included in the study. We used a reward-related associative learning (RRAL) task primed with emotional (happy, sad, neutral) faces to investigate the effect of salient stimuli on reward-related learning and decision-making in functional magnetic resonance imaging (fMRI). Participants were instructed to ignore emotional faces during the task. The fMRI data were analyzed using a full-factorial general linear model (GLM) in Statistical Parametric Mapping (SPM12). RESULTS In depressed patients, cues primed with sad faces were associated with reduced amygdala activation. However, both HC and MDD group exhibited reduced ventral striatal activity while learning reward-related cues and receiving rewards. LIMITATIONS The patients'medication usage was not standardized. CONCLUSIONS This study underscores the functional alteration of the amygdala in response to cognitive tasks presented with negative emotionally salient stimuli in the environment of MDD patients. The observed alterations in amygdala activity suggest potential interconnected effects with other regions of the prefrontal cortex. Understanding the intricate neural connections and their disruptions in depression is crucial for unraveling the complex pathophysiology of the disorder.
Collapse
Affiliation(s)
- Duygu Keskin-Gokcelli
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Gozde Kizilates-Evin
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Istanbul, Turkey
| | - Seda Eroglu-Koc
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Department of Psychology, Faculty of Letters, Dokuz Eylul University, Izmir, Turkey
| | - Kaya Oguz
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Department of Computer Engineering, Izmir University of Economics, Izmir, Turkey
| | - Cenk Eraslan
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Department of Radiology, School of Medicine, Ege University, Izmir, Turkey
| | - Omer Kitis
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Department of Radiology, School of Medicine, Ege University, Izmir, Turkey
| | - Ali Saffet Gonul
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey; Department of Psychiatry and Behavioral Sciences, Mercer School of Medicine, Mercer University, Macon, GA, USA.
| |
Collapse
|
8
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Toth J, Kurtin DL, Brosnan M, Arvaneh M. Opportunities and obstacles in non-invasive brain stimulation. Front Hum Neurosci 2024; 18:1385427. [PMID: 38562225 PMCID: PMC10982339 DOI: 10.3389/fnhum.2024.1385427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity. Looking forward, we propose five areas of opportunity for future research: closed-loop stimulation, consistent stimulation of the intended target region, reducing bias, multimodal approaches, and strategies to address low sample sizes.
Collapse
Affiliation(s)
- Jake Toth
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| | | | - Méadhbh Brosnan
- School of Psychology, University College Dublin, Dublin, Ireland
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mahnaz Arvaneh
- Automatic Control and Systems Engineering, Neuroscience Institute, Insigneo Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Vohryzek J, Cabral J, Lord LD, Fernandes HM, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. Brain dynamics predictive of response to psilocybin for treatment-resistant depression. Brain Commun 2024; 6:fcae049. [PMID: 38515439 PMCID: PMC10957168 DOI: 10.1093/braincomms/fcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Portugal
| | - Louis-David Lord
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Lord LD, Carletti T, Fernandes H, Turkheimer FE, Expert P. Altered dynamical integration/segregation balance during anesthesia-induced loss of consciousness. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1279646. [PMID: 38116461 PMCID: PMC10728865 DOI: 10.3389/fnetp.2023.1279646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e., long-distance interactions between brain regions, and segregation, i.e., local processing in functionally specialized clusters. Altered states of consciousness have notably been characterized by a tipping of the integration/segregation balance away from this equilibrium. Historically, functional MRI (fMRI) has been the modality of choice for such investigations. However, fMRI does not enable characterization of the integration/segregation balance at sub-second temporal resolution. Here, we investigated global brain spatiotemporal patterns in electrocorticography (ECoG) data of a monkey (Macaca fuscata) under either ketamine or propofol general anesthesia. We first studied the effects of these anesthetics from the perspective of band-specific synchronization across the entire ECoG array, treating individual channels as oscillators. We further aimed to determine whether synchrony within spatially localized clusters of oscillators was differently affected by the drugs in comparison to synchronization over spatially distributed subsets of ECoG channels, thereby quantifying changes in integration/segregation balance on physiologically-relevant time scales. The findings reflect global brain dynamics characterized by a loss of long-range integration in multiple frequency bands under both ketamine and propofol anesthesia, most pronounced in the beta (13-30 Hz) and low-gamma bands (30-80 Hz), and with strongly preserved local synchrony in all bands.
Collapse
Affiliation(s)
- Louis-David Lord
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
| | - Timoteo Carletti
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
- Department of Mathematics and Namur Institute for Complex Systems (naXys), University of Namur, Namur, Belgium
| | - Henrique Fernandes
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
- Centre for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paul Expert
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
- Global Business School for Health, University College London, London, United Kingdom
| |
Collapse
|
12
|
Kauttonen J, Paekivi S, Kauramäki J, Tikka P. Unraveling dyadic psycho-physiology of social presence between strangers during an audio drama - a signal-analysis approach. Front Psychol 2023; 14:1153968. [PMID: 37928563 PMCID: PMC10622809 DOI: 10.3389/fpsyg.2023.1153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
A mere co-presence of an unfamiliar person may modulate an individual's attentive engagement with specific events or situations to a significant degree. To understand better how such social presence affects experiences, we recorded a set of parallel multimodal facial and psychophysiological data with subjects (N = 36) who listened to dramatic audio scenes alone or when facing an unfamiliar person. Both a selection of 6 s affective sound clips (IADS-2) followed by a 27 min soundtrack extracted from a Finnish episode film depicted familiar and often intense social situations familiar from the everyday world. Considering the systemic complexity of both the chosen naturalistic stimuli and expected variations in the experimental social situation, we applied a novel combination of signal analysis methods using inter-subject correlation (ISC) analysis, Representational Similarity Analysis (RSA) and Recurrence Quantification Analysis (RQA) followed by gradient boosting classification. We report our findings concerning three facial signals, gaze, eyebrow and smile that can be linked to socially motivated facial movements. We found that ISC values of pairs, whether calculated on true pairs or any two individuals who had a partner, were lower than the group with single individuals. Thus, audio stimuli induced more unique responses in those subjects who were listening to it in the presence of another person, while individual listeners tended to yield a more uniform response as it was driven by dramatized audio stimulus alone. Furthermore, our classifiers models trained using recurrence properties of gaze, eyebrows and smile signals demonstrated distinctive differences in the recurrence dynamics of signals from paired subjects and revealed the impact of individual differences on the latter. We showed that the presence of an unfamiliar co-listener that modifies social dynamics of dyadic listening tasks can be detected reliably from visible facial modalities. By applying our analysis framework to a broader range of psycho-physiological data, together with annotations of the content, and subjective reports of participants, we expected more detailed dyadic dependencies to be revealed. Our work contributes towards modeling and predicting human social behaviors to specific types of audio-visually mediated, virtual, and live social situations.
Collapse
Affiliation(s)
- Janne Kauttonen
- Competences, RDI and Digitalization, Haaga-Helia University of Applied Sciences, Helsinki, Finland
- School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Sander Paekivi
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Jaakko Kauramäki
- School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Tikka
- School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Enactive Virtuality Lab, Baltic Film, Media and Arts School (BFM), Centre of Excellence in Media Innovation and Digital Culture (MEDIT), Tallinn University, Tallinn, Estonia
| |
Collapse
|
13
|
Hipólito I, Mago J, Rosas FE, Carhart-Harris R. Pattern breaking: a complex systems approach to psychedelic medicine. Neurosci Conscious 2023; 2023:niad017. [PMID: 37424966 PMCID: PMC10325487 DOI: 10.1093/nc/niad017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recent research has demonstrated the potential of psychedelic therapy for mental health care. However, the psychological experience underlying its therapeutic effects remains poorly understood. This paper proposes a framework that suggests psychedelics act as destabilizers, both psychologically and neurophysiologically. Drawing on the 'entropic brain' hypothesis and the 'RElaxed Beliefs Under pSychedelics' model, this paper focuses on the richness of psychological experience. Through a complex systems theory perspective, we suggest that psychedelics destabilize fixed points or attractors, breaking reinforced patterns of thinking and behaving. Our approach explains how psychedelic-induced increases in brain entropy destabilize neurophysiological set points and lead to new conceptualizations of psychedelic psychotherapy. These insights have important implications for risk mitigation and treatment optimization in psychedelic medicine, both during the peak psychedelic experience and during the subacute period of potential recovery.
Collapse
Affiliation(s)
- Inês Hipólito
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Department of Philosophy, Macquarie University, New South Wales 2109, Australia
| | - Jonas Mago
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Integrative Program in Neuroscience, McGill University, Montreal, Quebec QC H3A, Canada
| | - Fernando E Rosas
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London SW7 2BX, United Kingdom
- Centre for Complexity Science, Imperial College London, London SW7 2BX, United Kingdom
- Data Science Institute, Imperial College London, London SW7 2BX, United Kingdom
- Department of Informatics, University of Sussex, Brighton BN1 9RH, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Robin Carhart-Harris
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London SW7 2BX, United Kingdom
- Psychedelics Division, University of California San Francisco, San Francisco, CA 92521, United States
| |
Collapse
|
14
|
A complex systems perspective on psychedelic brain action. Trends Cogn Sci 2023; 27:433-445. [PMID: 36740518 DOI: 10.1016/j.tics.2023.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Recent findings suggesting the potential transdiagnostic efficacy of psychedelic-assisted therapy have fostered the need to deepen our understanding of psychedelic brain action. Functional neuroimaging investigations have found that psychedelics reduce the functional segregation of large-scale brain networks. However, beyond this general trend, findings have been largely inconsistent. We argue here that a perspective based on complexity science that foregrounds the distributed, interactional, and dynamic nature of brain function may render these inconsistencies intelligible. We propose that psychedelics induce a mode of brain function that is more dynamically flexible, diverse, integrated, and tuned for information sharing, consistent with greater criticality. This 'meta' perspective has the potential to unify past findings and guide intuitions toward compelling mechanistic models.
Collapse
|
15
|
Butchbach MER, Scott RC. Biological networks and complexity in early-onset motor neuron diseases. Front Neurol 2022; 13:1035406. [PMID: 36341099 PMCID: PMC9634177 DOI: 10.3389/fneur.2022.1035406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Motor neuron diseases (MNDs) are neuromuscular disorders where the spinal motor neurons-either the cell bodies themselves or their axons-are the primary cells affected. To date, there are 120 different genes that are lost or mutated in pediatric-onset MNDs. Most of these childhood-onset disorders, aside from spinal muscular atrophy (SMA), lack viable therapeutic options. Previous research on MNDs has focused on understanding the pathobiology of a single, specific gene mutation and targeting therapies to that pathobiology. This reductionist approach has yielded therapeutic options for a specific disorder, in this case SMA. Unfortunately, therapies specific for SMA have not been effective against other pediatric-onset MNDs. Pursuing the same approach for the other defined MNDs would require development of at least 120 independent treatments raising feasibility issues. We propose an alternative to this this type of reductionist approach by conceptualizing MNDs in a complex adaptive systems framework that will allow identification of common molecular and cellular pathways which form biological networks that are adversely affected in early-onset MNDs and thus MNDs with similar phenotypes despite diverse genotypes. This systems biology approach highlights the complexity and self-organization of the motor system as well as the ways in which it can be affected by these genetic disorders. Using this integrated approach to understand early-onset MNDs, we would be better poised to expand the therapeutic repertoire for multiple MNDs.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, DE, United States,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States,Department of Biological Sciences, University of Delaware, Newark, DE, United States,*Correspondence: Matthew E. R. Butchbach
| | - Rod C. Scott
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, DE, United States,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States,Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States,Neurosciences Unit, Institute of Child Health, University College London, London, United Kingdom,Rod C. Scott
| |
Collapse
|
16
|
Hancock F, Cabral J, Luppi AI, Rosas FE, Mediano PAM, Dipasquale O, Turkheimer FE. Metastability, fractal scaling, and synergistic information processing: What phase relationships reveal about intrinsic brain activity. Neuroimage 2022; 259:119433. [PMID: 35781077 PMCID: PMC9339663 DOI: 10.1016/j.neuroimage.2022.119433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Dynamic functional connectivity (dFC) in resting-state fMRI holds promise to deliver candidate biomarkers for clinical applications. However, the reliability and interpretability of dFC metrics remain contested. Despite a myriad of methodologies and resulting measures, few studies have combined metrics derived from different conceptualizations of brain functioning within the same analysis - perhaps missing an opportunity for improved interpretability. Using a complexity-science approach, we assessed the reliability and interrelationships of a battery of phase-based dFC metrics including tools originating from dynamical systems, stochastic processes, and information dynamics approaches. Our analysis revealed novel relationships between these metrics, which allowed us to build a predictive model for integrated information using metrics from dynamical systems and information theory. Furthermore, global metastability - a metric reflecting simultaneous tendencies for coupling and decoupling - was found to be the most representative and stable metric in brain parcellations that included cerebellar regions. Additionally, spatiotemporal patterns of phase-locking were found to change in a slow, non-random, continuous manner over time. Taken together, our findings show that the majority of characteristics of resting-state fMRI dynamics reflect an interrelated dynamical and informational complexity profile, which is unique to each acquisition. This finding challenges the interpretation of results from cross-sectional designs for brain neuromarker discovery, suggesting that individual life-trajectories may be more informative than sample means.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge; Department of Clinical Neurosciences, University of Cambridge; Leverhulme Centre for the Future of Intelligence, University of Cambridge; Alan Turing Institute, London, United Kingdom
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, United Kingdom; Data Science Institute, Imperial College London, London SW7 2AZ, United Kingdom; Centre for Complexity Science, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom; Department of Psychology, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Turkheimer FE, Liu J, Fagerholm ED, Dazzan P, Loggia ML, Bettelheim E. The art of pain: A quantitative color analysis of the self-portraits of Frida Kahlo. Front Hum Neurosci 2022; 16:1000656. [PMID: 36118965 PMCID: PMC9478482 DOI: 10.3389/fnhum.2022.1000656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Frida Kahlo (1907–1954) was a Mexican artist who is remembered for her self-portraits, pain and passion, and bold, vibrant colors. This work aims to use her life story and her artistic production in a longitudinal study to examine with quantitative tools the effects of physical and emotional pain (rage) on artistic expression. Kahlo suffered from polio as a child, was involved in a bus accident as a teenager where she suffered multiple fractures of her spine and had 30 operations throughout her lifetime. She also had a tempestuous relationship with her painter husband, Diego Rivera. Her physical and personal troubles however became the texture of her vivid visual vocabulary—usually expressed through the depiction of Mexican and indigenous culture or the female experience and form. We applied color analysis to a series of Frida's self-portraits and revealed a very strong association of physical pain and emotional rage with low wavelength colors (red and yellow), indicating that the expression of her ailments was, consciously or not, achieved by increasing the perceived luminance of the canvas. Further quantitative analysis that used the fractal dimension identified “The broken column” as the portrait with higher compositional complexity, which matches previous critical acclaim of this portrait as the climax of her art. These results confirm the ability of color analysis to extract emotional and cognitive features from artistic work. We suggest that these tools could be used as markers to support artistic and creative interventions in mental health.
Collapse
Affiliation(s)
- Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- *Correspondence: Federico E. Turkheimer
| | - Jingyi Liu
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Erik D. Fagerholm
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Eric Bettelheim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Vohryzek J, Cabral J, Vuust P, Deco G, Kringelbach ML. Understanding brain states across spacetime informed by whole-brain modelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210247. [PMID: 35599554 PMCID: PMC9125224 DOI: 10.1098/rsta.2021.0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 05/26/2023]
Abstract
In order to survive in a complex environment, the human brain relies on the ability to flexibly adapt ongoing behaviour according to intrinsic and extrinsic signals. This capability has been linked to specific whole-brain activity patterns whose relative stability (order) allows for consistent functioning, supported by sufficient intrinsic instability needed for optimal adaptability. The emergent, spontaneous balance between order and disorder in brain activity over spacetime underpins distinct brain states. For example, depression is characterized by excessively rigid, highly ordered states, while psychedelics can bring about more disordered, sometimes overly flexible states. Recent developments in systems, computational and theoretical neuroscience have started to make inroads into the characterization of such complex dynamics over space and time. Here, we review recent insights drawn from neuroimaging and whole-brain modelling motivating using mechanistic principles from dynamical system theory to study and characterize brain states. We show how different healthy and altered brain states are associated to characteristic spacetime dynamics which in turn may offer insights that in time can inspire new treatments for rebalancing brain states in disease. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Hancock F, Rosas FE, Mediano PAM, Luppi AI, Cabral J, Dipasquale O, Turkheimer FE. May the 4C's be with you: an overview of complexity-inspired frameworks for analysing resting-state neuroimaging data. J R Soc Interface 2022; 19:20220214. [PMID: 35765805 PMCID: PMC9240685 DOI: 10.1098/rsif.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Competing and complementary models of resting-state brain dynamics contribute to our phenomenological and mechanistic understanding of whole-brain coordination and communication, and provide potential evidence for differential brain functioning associated with normal and pathological behaviour. These neuroscientific theories stem from the perspectives of physics, engineering, mathematics and psychology and create a complicated landscape of domain-specific terminology and meaning, which, when used outside of that domain, may lead to incorrect assumptions and conclusions within the neuroscience community. Here, we review and clarify the key concepts of connectivity, computation, criticality and coherence-the 4C's-and outline a potential role for metastability as a common denominator across these propositions. We analyse and synthesize whole-brain neuroimaging research, examined through functional magnetic imaging, to demonstrate that complexity science offers a principled and integrated approach to describe, and potentially understand, macroscale spontaneous brain functioning.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Department of Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
20
|
Structure of visual biases revealed by individual differences. Vision Res 2022; 195:108014. [DOI: 10.1016/j.visres.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022]
|
21
|
Brusini I, MacNicol E, Kim E, Smedby Ö, Wang C, Westman E, Veronese M, Turkheimer F, Cash D. MRI-derived brain age as a biomarker of ageing in rats: validation using a healthy lifestyle intervention. Neurobiol Aging 2022; 109:204-215. [PMID: 34775211 DOI: 10.1016/j.neurobiolaging.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
The difference between brain age predicted from MRI and chronological age (the so-called BrainAGE) has been proposed as an ageing biomarker. We analyse its cross-species potential by testing it on rats undergoing an ageing modulation intervention. Our rat brain age prediction model combined Gaussian process regression with a classifier and achieved a mean absolute error (MAE) of 4.87 weeks using cross-validation on a longitudinal dataset of 31 normal ageing rats. It was then tested on two groups of 24 rats (MAE = 9.89 weeks, correlation coefficient = 0.86): controls vs. a group under long-term environmental enrichment and dietary restriction (EEDR). Using a linear mixed-effects model, BrainAGE was found to increase more slowly with chronological age in EEDR rats (p=0.015 for the interaction term). Cox regression showed that older BrainAGE at 5 months was associated with higher mortality risk (p=0.03). Our findings suggest that lifestyle-related prevention approaches may help to slow down brain ageing in rodents and the potential of BrainAGE as a predictor of age-related health outcomes.
Collapse
Affiliation(s)
- Irene Brusini
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chunliang Wang
- Department of Biomedical Engineering and Health Systems,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Luppi AI, Mediano PAM, Rosas FE, Harrison DJ, Carhart-Harris RL, Bor D, Stamatakis EA. What it is like to be a bit: an integrated information decomposition account of emergent mental phenomena. Neurosci Conscious 2021; 2021:niab027. [PMID: 34804593 PMCID: PMC8600547 DOI: 10.1093/nc/niab027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
A central question in neuroscience concerns the relationship between consciousness and its physical substrate. Here, we argue that a richer characterization of consciousness can be obtained by viewing it as constituted of distinct information-theoretic elements. In other words, we propose a shift from quantification of consciousness-viewed as integrated information-to its decomposition. Through this approach, termed Integrated Information Decomposition (ΦID), we lay out a formal argument that whether the consciousness of a given system is an emergent phenomenon depends on its information-theoretic composition-providing a principled answer to the long-standing dispute on the relationship between consciousness and emergence. Furthermore, we show that two organisms may attain the same amount of integrated information, yet differ in their information-theoretic composition. Building on ΦID's revised understanding of integrated information, termed ΦR, we also introduce the notion of ΦR-ing ratio to quantify how efficiently an entity uses information for conscious processing. A combination of ΦR and ΦR-ing ratio may provide an important way to compare the neural basis of different aspects of consciousness. Decomposition of consciousness enables us to identify qualitatively different 'modes of consciousness', establishing a common space for mapping the phenomenology of different conscious states. We outline both theoretical and empirical avenues to carry out such mapping between phenomenology and information-theoretic modes, starting from a central feature of everyday consciousness: selfhood. Overall, ΦID yields rich new ways to explore the relationship between information, consciousness, and its emergence from neural dynamics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - David J Harrison
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge CB2 3RH, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
23
|
Fish LA, Nyström P, Gliga T, Gui A, Begum Ali J, Mason L, Garg S, Green J, Johnson MH, Charman T, Harrison R, Meaburn E, Falck-Ytter T, Jones EJH. Development of the pupillary light reflex from 9 to 24 months: association with common autism spectrum disorder (ASD) genetic liability and 3-year ASD diagnosis. J Child Psychol Psychiatry 2021; 62:1308-1319. [PMID: 34492739 DOI: 10.1111/jcpp.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although autism spectrum disorder (ASD) is heritable, the mechanisms through which genes contribute to symptom emergence remain unclear. Investigating candidate intermediate phenotypes such as the pupillary light reflex (PLR) prospectively from early in development could bridge genotype and behavioural phenotype. METHODS Using eye tracking, we longitudinally measured the PLR at 9, 14 and 24 months in a sample of infants (N = 264) enriched for a family history of ASD; 27 infants received an ASD diagnosis at 3 years. We examined the 9- to 24-month developmental trajectories of PLR constriction latency (onset; ms) and amplitude (%) and explored their relation to categorical 3-year ASD outcome, polygenic liability for ASD and dimensional 3-year social affect (SA) and repetitive/restrictive behaviour (RRB) traits. Polygenic scores for ASD (PGSASD ) were calculated for 190 infants. RESULTS While infants showed a decrease in latency between 9 and 14 months, higher PGSASD was associated with a smaller decrease in latency in the first year (β = -.16, 95% CI = -0.31, -0.002); infants with later ASD showed a significantly steeper decrease in latency (a putative 'catch-up') between 14 and 24 months relative to those with other outcomes (typical: β = .54, 95% CI = 0.08, 0.99; other: β = .53, 95% CI = 0.02, 1.04). Latency development did not associate with later dimensional variation in ASD-related traits. In contrast, change in amplitude was not related to categorical ASD or genetics, but decreasing 9- to 14-month amplitude was associated with higher SA (β = .08, 95% CI = 0.01, 0.14) and RRB (β = .05, 95% CI = 0.004, 0.11) traits. CONCLUSIONS These findings corroborate PLR development as possible intermediate phenotypes being linked to both genetic liability and phenotypic outcomes. Future work should incorporate alternative measures (e.g. functionally informed structural and genetic measures) to test whether distinct neural mechanisms underpin PLR alterations.
Collapse
Affiliation(s)
- Laurel A Fish
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Pär Nyström
- Uppsala Child & Babylab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Teodora Gliga
- School of Psychology, University of East Anglia, Norwich, UK
| | - Anna Gui
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Jannath Begum Ali
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Luke Mason
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Shruti Garg
- Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan Green
- Neuroscience & Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Mark H Johnson
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK.,Department of Psychology, Cambridge University, Cambridge, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Harrison
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Emma Meaburn
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Terje Falck-Ytter
- Development and Neurodiversity Lab (DIVE), Department of Psychology, Uppsala University, Uppsala, Sweden.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Emily J H Jones
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | | |
Collapse
|
24
|
Abstract
Cognitive processes-from basic sensory analysis to language understanding-are typically contextualized. While the importance of considering context for understanding cognition has long been recognized in psychology and philosophy, it has not yet had much impact on cognitive neuroscience research, where cognition is often studied in decontextualized paradigms. Here, we present examples of recent studies showing that context changes the neural basis of diverse cognitive processes, including perception, attention, memory, and language. Within the domains of perception and language, we review neuroimaging results showing that context interacts with stimulus processing, changes activity in classical perception and language regions, and recruits additional brain regions that contribute crucially to naturalistic perception and language. We discuss how contextualized cognitive neuroscience will allow for discovering new principles of the mind and brain.
Collapse
Affiliation(s)
- Roel M Willems
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|