1
|
Kümmerer M, Bethge M, Wallis TSA. DeepGaze III: Modeling free-viewing human scanpaths with deep learning. J Vis 2022; 22:7. [PMID: 35472130 PMCID: PMC9055565 DOI: 10.1167/jov.22.5.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Humans typically move their eyes in “scanpaths” of fixations linked by saccades. Here we present DeepGaze III, a new model that predicts the spatial location of consecutive fixations in a free-viewing scanpath over static images. DeepGaze III is a deep learning–based model that combines image information with information about the previous fixation history to predict where a participant might fixate next. As a high-capacity and flexible model, DeepGaze III captures many relevant patterns in the human scanpath data, setting a new state of the art in the MIT300 dataset and thereby providing insight into how much information in scanpaths across observers exists in the first place. We use this insight to assess the importance of mechanisms implemented in simpler, interpretable models for fixation selection. Due to its architecture, DeepGaze III allows us to disentangle several factors that play an important role in fixation selection, such as the interplay of scene content and scanpath history. The modular nature of DeepGaze III allows us to conduct ablation studies, which show that scene content has a stronger effect on fixation selection than previous scanpath history in our main dataset. In addition, we can use the model to identify scenes for which the relative importance of these sources of information differs most. These data-driven insights would be difficult to accomplish with simpler models that do not have the computational capacity to capture such patterns, demonstrating an example of how deep learning advances can be used to contribute to scientific understanding.
Collapse
Affiliation(s)
| | | | - Thomas S A Wallis
- Technical University of Darmstadt, Institute of Psychology and Centre for Cognitive Science, Darmstadt, Germany.,
| |
Collapse
|
2
|
Woolrych A, Vautrelle N, Reynolds JNJ, Parr-Brownlie LC. Throwing open the doors of perception: The role of dopamine in visual processing. Eur J Neurosci 2021; 54:6135-6146. [PMID: 34340265 DOI: 10.1111/ejn.15408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/11/2023]
Abstract
Animals form associations between visual cues and behaviours. Although dopamine is known to be critical in many areas of the brain to bind sensory information with appropriate responses, dopamine's role in the visual system is less well understood. Visual signals, which indicate the likely occurrence of a rewarding or aversive stimulus or indicate the context within which such stimuli may arrive, modulate activity in the superior colliculus and alter behaviour. However, such signals primarily originate in cortical and basal ganglia circuits, and evidence of direct signalling from midbrain dopamine neurons to superior colliculus is lacking. Instead, hypothalamic A13 dopamine neurons innervate the superior colliculus, and dopamine receptors are differentially expressed in the superior colliculus, with D1 receptors in superficial layers and D2 receptors in deep layers. However, it remains unknown if A13 dopamine neurons control behaviours through their effect on afferents within the superior colliculus. We propose that A13 dopamine neurons may play a critical role in processing information in the superior colliculus, modifying behavioural responses to visual cues, and propose some testable hypotheses regarding dopamine's effect on visual perception.
Collapse
Affiliation(s)
- Alexander Woolrych
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Nicolas Vautrelle
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Liu HQ, Wei JK, Li B, Wang MS, Wu RQ, Rizak JD, Zhong L, Wang L, Xu FQ, Shen YY, Hu XT, Zhang YP. Divergence of dim-light vision among bats (order: Chiroptera) as estimated by molecular and electrophysiological methods. Sci Rep 2015; 5:11531. [PMID: 26100095 PMCID: PMC5155579 DOI: 10.1038/srep11531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 02/05/2023] Open
Abstract
Dim-light vision is present in all bats, but is divergent among species. Old-World fruit bats (Pteropodidae) have fully developed eyes; the eyes of insectivorous bats are generally degraded, and these bats rely on well-developed echolocation. An exception is the Emballonuridae, which are capable of laryngeal echolocation but prefer to use vision for navigation and have normal eyes. In this study, integrated methods, comprising manganese-enhanced magnetic resonance imaging (MEMRI), f-VEP and RNA-seq, were utilized to verify the divergence. The results of MEMRI showed that Pteropodidae bats have a much larger superior colliculus (SC)/ inferior colliculus (IC) volume ratio (3:1) than insectivorous bats (1:7). Furthermore, the absolute visual thresholds (log cd/m(2)•s) of Pteropodidae (-6.30 and -6.37) and Emballonuridae (-3.71) bats were lower than those of other insectivorous bats (-1.90). Finally, genes related to the visual pathway showed signs of positive selection, convergent evolution, upregulation and similar gene expression patterns in Pteropodidae and Emballonuridae bats. Different results imply that Pteropodidae and Emballonuridae bats have more developed vision than the insectivorous bats and suggest that further research on bat behavior is warranted.
Collapse
Affiliation(s)
- He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Kuan Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rui-Qi Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Joshua D. Rizak
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Zhong
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
| | - Lu Wang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
| | - Fu-Qiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yong-Yi Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, 515041, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| |
Collapse
|
4
|
Pitti A, Kuniyoshi Y, Quoy M, Gaussier P. Modeling the minimal newborn's intersubjective mind: the visuotopic-somatotopic alignment hypothesis in the superior colliculus. PLoS One 2013; 8:e69474. [PMID: 23922718 PMCID: PMC3724856 DOI: 10.1371/journal.pone.0069474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
The question whether newborns possess inborn social skills is a long debate in developmental psychology. Fetal behavioral and anatomical observations show evidences for the control of eye movements and facial behaviors during the third trimester of pregnancy whereas specific sub-cortical areas, like the superior colliculus (SC) and the striatum appear to be functionally mature to support these behaviors. These observations suggest that the newborn is potentially mature for developing minimal social skills. In this manuscript, we propose that the mechanism of sensory alignment observed in SC is particularly important for enabling the social skills observed at birth such as facial preference and facial mimicry. In a computational simulation of the maturing superior colliculus connected to a simulated facial tissue of a fetus, we model how the incoming tactile information is used to direct visual attention toward faces. We suggest that the unisensory superficial visual layer (eye-centered) and the deep somatopic layer (face-centered) in SC are combined into an intermediate layer for visuo-tactile integration and that multimodal alignment in this third layer allows newborns to have a sensitivity to configuration of eyes and mouth. We show that the visual and tactile maps align through a Hebbian learning stage and and strengthen their synaptic links from each other into the intermediate layer. It results that the global network produces some emergent properties such as sensitivity toward the spatial configuration of face-like patterns and the detection of eyes and mouth movement.
Collapse
Affiliation(s)
- Alexandre Pitti
- Department of Compter Sciences, ETIS Laboratory, UMR CNRS 8051, the University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France.
| | | | | | | |
Collapse
|
5
|
Saeb S, Weber C, Triesch J. Learning the optimal control of coordinated eye and head movements. PLoS Comput Biol 2011; 7:e1002253. [PMID: 22072953 PMCID: PMC3207939 DOI: 10.1371/journal.pcbi.1002253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 09/13/2011] [Indexed: 11/20/2022] Open
Abstract
Various optimality principles have been proposed to explain the characteristics of coordinated eye and head movements during visual orienting behavior. At the same time, researchers have suggested several neural models to underly the generation of saccades, but these do not include online learning as a mechanism of optimization. Here, we suggest an open-loop neural controller with a local adaptation mechanism that minimizes a proposed cost function. Simulations show that the characteristics of coordinated eye and head movements generated by this model match the experimental data in many aspects, including the relationship between amplitude, duration and peak velocity in head-restrained and the relative contribution of eye and head to the total gaze shift in head-free conditions. Our model is a first step towards bringing together an optimality principle and an incremental local learning mechanism into a unified control scheme for coordinated eye and head movements. Human beings and many other species redirect their gaze towards targets of interest through rapid gaze shifts known as saccades. These are made approximately three to four times every second, and larger saccades result from fast and concurrent movement of the animal's eyes and head. Experimental studies have revealed that during saccades, the motor system follows certain principles such as respecting a specific relationship between the relative contribution of eye and head motor systems to total gaze shift. Various researchers have hypothesized that these principles are implications of some optimality criteria in the brain, but it remains unclear how the brain can learn such an optimal behavior. We propose a new model that uses a plausible learning mechanism to satisfy an optimality criterion. We show that after learning, the model is able to reproduce motor behavior with biologically plausible properties. In addition, it predicts the nature of the learning signals. Further experimental research is necessary to test the validity of our model.
Collapse
Affiliation(s)
- Sohrab Saeb
- Frankfurt Institute for Advanced Studies (FIAS), Goethe University Frankfurt, Germany.
| | | | | |
Collapse
|