1
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
2
|
Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese herbal ingredient for the treatment of atherosclerosis. Front Pharmacol 2023; 14:1321880. [PMID: 38108067 PMCID: PMC10722201 DOI: 10.3389/fphar.2023.1321880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Shuanghong Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yang Zhang
- Weifang People’s Hospital, Weifang, China
| | - Xiaoyuan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Integrated Network Pharmacology and UPLC/Q-TOF-MS Screen System to Exploring Anti-Inflammatory Active Components and Mechanism of Shunaoxin Pills. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2868767. [PMID: 35463086 PMCID: PMC9023156 DOI: 10.1155/2022/2868767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Background Chronic cerebral ischemia (CCI) is a pathological condition associated with a variety of cerebrovascular diseases. Shunaoxin pills (SNX) are a traditional Chinese medicine (TCM) used to improve blood circulation. However, its multicomponent and multitarget features make it difficult to decipher the molecular mechanisms. Objective Thus, in this study, we aimed to identify the key anti-inflammatory components of SNX as markers for standardization and quality control and the potential pharmacological mechanisms of SNX in the treatment of CCI by network pharmacology to provide scientific evidence of its clinical efficacy. Methods We evaluated the anti-inflammatory effect of SNX using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC/Q-TOF-MS) combined with a dual-luciferase reporter assay for nuclear factor kappa B (NF-κB) inhibition to identify the active components in SNX. In addition, key pathways involved in the anti-inflammatory effect of SNX were predicted using a network pharmacology approach, and some crucial proteins and pathways were further validated by Western blotting. Results Shunaoxin pills inhibited NF-κB through tumor necrosis factor-α (TNF-α) stimulation in 293T cells. The therapeutic effect may be related to 10 pathways regulated by ligustilide, ferulic acid, ligustrazine, and senkyunolide I. It was further confirmed that ligustilide could reduce the inflammatory response by inhibiting the phosphorylation of p38 and 3-phosphoinositide-dependent kinase 1 (PDK1). Conclusions Ligustilide, senkyunolide I, ferulic acid, and ligustrazine could be used as anti-inflammatory Q-markers to control the quality of SNX, and p38 and PDK1 might be potential targets of SNX in the treatment of CCI.
Collapse
|
4
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
5
|
Lin JJ, Chen W, Gong M, Xu X, Du MY, Wang SF, Yang LY, Wang Y, Liu KX, Kong P, Li B, Liu K, Li YM, Dong LH, Sun SG. Expression and Functional Analysis of lncRNAs Involved in Platelet-Derived Growth Factor-BB-Induced Proliferation of Human Aortic Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:702718. [PMID: 34557530 PMCID: PMC8452921 DOI: 10.3389/fcvm.2021.702718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of many vascular remodeling diseases. Because long non-coding RNAs (lncRNAs) play a critical role in cardiovascular diseases, we analyzed the key lncRNAs that regulate VSMC proliferation. Microarray analysis identified 2,643 differentially expressed lncRNAs (DELs) and 3,720 differentially expressed coding genes (DEGs) between fetal bovine serum (FBS) starvation-induced quiescent human aortic smooth muscle cells (HASMCs) and platelet-derived growth factor-BB (PDGF-BB)-stimulated proliferative HASMCs. Gene Ontology and pathway analyses of the identified DEGs and DELs demonstrated that many lncRNAs were enriched in pathways related to cell proliferation. One of the upregulated lncRNAs in proliferative HASMC was HIF1A anti-sense RNA 2 (HIF1A-AS2). HIF1A-AS2 suppression decreased HASMC proliferation via the miR-30e-5p/CCND2 mRNA axis. We have thus identified key DELs and DEGs involved in the regulation of PDGF-BB induced HASMC proliferation. Moreover, HIF1A-AS2 promotes HASMC proliferation, suggesting its potential involvement in VSMC proliferative vascular diseases.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yi-Ming Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
7
|
Chen W, Lin J, Li B, Cao S, Li H, Zhao J, Liu K, Li Y, Li Y, Sun S. Screening and functional prediction of differentially expressed circRNAs in proliferative human aortic smooth muscle cells. J Cell Mol Med 2020; 24:4762-4772. [PMID: 32155686 PMCID: PMC7176856 DOI: 10.1111/jcmm.15150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown. This study was conducted to identify the key differentially expressed circRNAs (DEcircRNAs) and predict their functions in human aortic smooth muscle cell (HASMC) proliferation. To achieve this, DEcircRNAs between proliferative and quiescent HASMCs were detected using a microarray, followed by quantitative real-time RT-PCR validation. A DEcircRNA-miRNA-DEmRNA network was constructed, and functional annotation was performed using Gene Ontology (GO) and KEGG pathway analysis. The function of hsa_circ_0002579 in HASMC proliferation was analysed by Western blot. The functional annotation of the DEcircRNA-miRNA-DEmRNA network indicated that the four DEcircRNAs might play roles in the TGF-β receptor signalling pathway, Ras signalling pathway, AMPK signalling pathway and Wnt signalling pathway. Twenty-seven DEcircRNAs with coding potential were screened. Hsa_circ_0002579 might be a pro-proliferation factor of HASMC. Overall, our study identified the key DEcircRNAs between proliferative and quiescent HASMCs, which might provide new important clues for exploring the functions of circRNAs in vascular remodelling diseases.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiajie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Shanhu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Huanhuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Jianzhi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Yiming Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Yang Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Geng L, Liu W, Chen Y. Tanshinone IIA attenuates Aβ-induced neurotoxicity by down-regulating COX-2 expression and PGE2 synthesis via inactivation of NF-κB pathway in SH-SY5Y cells. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2019; 26:15. [PMID: 31754613 PMCID: PMC6852914 DOI: 10.1186/s40709-019-0102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD). Tanshinone IIA (Tan IIA), extracted from traditional Chinese herb Radix salvia miltiorrhiza, possesses anti-oxidant and anti-inflammatory actions, as well as neuroprotective effects. The present study aims to explore the possible mechanism by which Tan IIA attenuated Aβ-induced neurotoxicity. Exposure of SH-SY5Y cells to different concentrations of Aβ led to neurotoxicity by reducing cell viability, inducing cell apoptosis and increasing neuroinflammation in a dose-dependent manner. Moreover, Aβ treatment promoted cyclooxygenase-2 (COX-2) expression and Prostaglandin E2 (PGE2) secretion, and activated nuclear transcription factor kappa (NF-κB) pathway in SH-SY5Y cells. However, pretreatment of SH-SY5Y cells with Tan IIA prior to Aβ prevented these Aβ-induced cellular events noticeably. These data suggested that Tan IIA exerted its neuroprotective action by alleviating Aβ-induced increase in COX-2 expression and PGE2 secretion via inactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Lijiao Geng
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| | - Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| | - Yong Chen
- Department of Neurology, Huaihe Hospital of Henan University, No. 357 Ximen Street, Kaifeng, 475000 China
| |
Collapse
|
9
|
Zhang B, Zhang Y, Deng F, Fang S. Ligustrazine prevents basilar artery remodeling in two-kidney-two-clip renovascular hypertension rats via suppressing PI3K/Akt signaling. Microvasc Res 2019; 128:103938. [PMID: 31682800 DOI: 10.1016/j.mvr.2019.103938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In the present study, we used a two-kidney-two-clip (2k2c) stroke-prone renovascular hypertension rat model (RHRSP) to investigate the protective effects of ligustrazine (TMP) on cerebral arteries and to examine PI3K/Akt pathway behavior under this protection. METHODS The cerebral artery remodeling was induced by 2k2c-induced renovascular hypertension. Brain basilar artery tissues were isolated and their histological changes were detected through H&E and EVG staining, α-SMA IHC staining, and transmission electron microscopy at four, eight, and twelve weeks after 2k2c surgery, both with and without TMP treatment. Meanwhile, the ET-1, Ang II, and NO levels in basilar arteries and plasma were determined. Furthermore, the PTEN expression and the activation of PI3K/Akt in basilar artery tissues were detected through IHC and Western Blot. In addition, the primary basilar artery smooth muscle cells (BASMCs) were cultured and TMP protection of BASMCs stimulated with ET-1/Ang II in the presence or absence of insulin-like growth factor 1 (IGF-1) was determined. RESULTS TMP attenuated basilar artery remodeling, decreased ET-1 and Ang II levels and increased NO level in basilar arteries and plasma of RHRSP rats. Moreover, TMP reduced BASMCs proliferation upon ET-1/Ang II stimulation. We also found that TMP could effectively suppress the activation of PI3K/Akt in 2k2c-RHRSP rat basilar artery and ET-1/Ang II stimulated BASMCs. Most importantly, IGF-1, as an activator of PI3K/Akt, could damage the protective effect of TMP. CONCLUSIONS TMP exerts its protective effects and prevents basilar artery remodeling in RHRSP rats at least partly through the inhibition of PI3K/Akt pathway.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Endothelin-1/metabolism
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/enzymology
- Hypertension, Renovascular/pathology
- Hypertension, Renovascular/physiopathology
- Ligation
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Nitric Oxide/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrazines/pharmacology
- Rats, Sprague-Dawley
- Renal Artery/surgery
- Signal Transduction
- Temporal Arteries/drug effects
- Temporal Arteries/enzymology
- Temporal Arteries/physiopathology
- Temporal Arteries/ultrastructure
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Beilin Zhang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Zhang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| | - Fang Deng
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| | - Shaokuan Fang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Di R, Yang Z, Xu P, Xu Y. Silencing PDK1 limits hypoxia-induced pulmonary arterial hypertension in mice via the Akt/p70S6K signaling pathway. Exp Ther Med 2019; 18:699-704. [PMID: 31281449 DOI: 10.3892/etm.2019.7627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the effect of phosphoinositide-dependent protein kinase-1 (PDK1) on hypoxia-induced pulmonary arterial hypertension (PAH). A mouse model of hypoxia-induced PAH was generated using normal or PDK1-knockout mice. Histological analysis and hemodynamic evaluations were performed to identify the progression of PAH. The expression and phosphorylation of PDK1/protein kinase B (Akt) signaling pathway associated proteins were detected by western blot analysis. Increased lung vessel thickness, right ventricular (RV) systolic pressure (RVSP), RV hypertrophy index (RVHI) values [the RV weight-to-left ventricular (LV) plus septum (S) weight ratio] and PDK1 expression were observed in the hypoxia-induced PAH model compared with the normal control. The phosphorylation of AktT308, proline-rich Akt1 substrate 1 (PRAS40) and S6KT229 was also notably increased in the PAH model compared with the control. The changes of proteins were not observed in the hypoxia treated PDK1flox/+ : Tie2-Cre mice. Similarly, the RVSP and RVHI values, and PDK1 expression were reduced in the hypoxia treated PDK1flox/+: Tie2-Cre mice to a level comparable with those in the control, suggesting that PDK1 partial knockout significantly limited hypoxia-induced PAH. The results of the present study indicate that PDK1 is essential for hypoxia-induced PAH through the PDK1/Akt/S6K signaling cascades.
Collapse
Affiliation(s)
- Ruomin Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, P.R. China
| | - Peng Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Yingjia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Acetylshikonin attenuates angiotensin II-induced proliferation and motility of human brain smooth muscle cells by inhibiting Wnt/β-catenin signaling. Hum Cell 2018; 31:242-250. [DOI: 10.1007/s13577-018-0207-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022]
|
13
|
Han F, Xue M, Chang Y, Li X, Yang Y, Sun B, Chen L. Triptolide Suppresses Glomerular Mesangial Cell Proliferation in Diabetic Nephropathy Is Associated with Inhibition of PDK1/Akt/mTOR Pathway. Int J Biol Sci 2017; 13:1266-1275. [PMID: 29104493 PMCID: PMC5666525 DOI: 10.7150/ijbs.20485] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Mesangial cell proliferation has been identified as a mainly contributing factor to glomerulosclerosis, which is typical of diabetic nephropathy. However, the specific mechanisms and therapies remain unclear. PDK1 is a critical regulator of cell proliferation, but the specific role of PDK1 in diabetic nephropathy has not been fully illuminated. In the current study, we demonstrated that triptolide (TP) ameliorated albuminuria in the high fat diet/STZ-induced diabetic rats. TP also suppressed the increased proliferating cell markers Ki-67 and PCNA in the kidney tissues. Our results of MTT and cell cycle analysis further confirmed that TP significantly inhibited mesangial cell proliferation, and the inhibition of PDK1/Akt/mTOR pathway might be the underlying mechanisms. In addition, we also found that the PDK1 activator (PS48) could reverse the cell proliferation inhibition role of TP. These data suggest that TP may be useful in prevention of diabetic glomerulosclerosis and that PDK1/Akt/mTOR pathway might be the underlying mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| |
Collapse
|
14
|
Fang J, Little PJ, Xu S. Atheroprotective Effects and Molecular Targets of Tanshinones Derived From Herbal Medicine Danshen. Med Res Rev 2017; 38:201-228. [PMID: 28295428 DOI: 10.1002/med.21438] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 12/17/2016] [Indexed: 01/07/2023]
Abstract
Medicinal plant-derived bioactive compounds modulate multiple therapeutic targets in cardiovascular diseases (CVDs), rendering herb-derived phytochemicals effective against one of the major CVDs-atherosclerosis. Danshen (Salvia milthiorriza Bunge) is a Chinese medicine that has been used in cardio- and cerebro-vascular therapeutic remedies in Asian countries for many years. Emerging evidence from cellular, animal, and clinical studies suggests that major lipophilic tanshinones from Danshen can treat atherosclerotic CVDs. In this review, we highlight recent advances in understanding the molecular mechanisms of tanshinones in treating atherosclerosis, ranging from endothelial dysfunction to chronic inflammation. We also overview new molecular targets of tanshinones, including endothelial nitric oxide synthase, AMP-activated protein kinase, ABC transporter A1, heme oxygenase 1, soluble epoxide hydrolase, 11β-hydroxysteroid dehydrogenase, estrogen receptor, and proprotein convertase subtilisin/kexin type 9. Thus, this review provides a new perspective for advancing our understanding of the "ancient" herb Danshen from "modern" biomedical perspectives, supporting the possibility of exploiting tanshinones and derivatives as effective therapeutics against atherosclerosis-related cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jian Fang
- Department of Pharmacy, Huadu District People's Hospital,Southern Medical University, 48 Xinhua Road, Guangzhou, 510800, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence (PACE), School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Xinhua College, Sun Yat-sen University, Guangzhou, 510520, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642
| |
Collapse
|
15
|
Yu J, Wang X, Li Y, Tang B. Tanshinone IIA suppresses gastric cancer cell proliferation and migration by downregulation of FOXM1. Oncol Rep 2017; 37:1394-1400. [PMID: 28184921 PMCID: PMC5364872 DOI: 10.3892/or.2017.5408] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (TSN) exhibits a variety of anticancer effects. However, whether it inhibits gastric cancer (GC) cell proliferation and migration and the mechanism remain unclear. In the present study, different concentrations of TSN were co-incubated with SGC-7901 cells. The pcDNA-FOXM1 or FOXM1-siRNA plasmid was transfected into cells before treatment with 5 µg/l TSN. The proliferation and migration abilities of the SGC-7901 cells were tested by MTT and wound healing assays. Western blotting was used to investigate the expression levels of P21, Ki-67, PCNA, MMP-2, MMP-9 and FOXM1. We found that compared with the control, the proliferation and migration abilities of the SGC-7901 cells were decreased after incubation with different concentrations of TSN in a dose-dependent manner (p<0.01). Moreover, the expression levels of Ki-67, PCAN, MMP-2, MMP-9 and FOXM1 were decreased, and P21 was increased in the TSN-treated SGC-7901 cells (p<0.01). In addition, downregulation of FOXM1 by FOXM1-siRNA had the same effect as TSN on SGC-7901 cells, and overexpression of FOXM1 partly abrogated TSN-mediated inhibition of SGC-7901 cell proliferation and migration. These results suggested that TSN inhibits SGC-7901 cell proliferation and migration by downregulation of FOXM1.
Collapse
Affiliation(s)
- Jiao Yu
- Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong 276000, P.R. China
| | - Xiaoxia Wang
- Linyi Tumor Hospital, Linyi, Shandong 276000, P.R. China
| | - Yuhua Li
- Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong 276000, P.R. China
| | - Bin Tang
- Lanzhou Hengdao Chinese Medicine Institute, Lanzhou, Shandong 730000, P.R. China
| |
Collapse
|
16
|
Jiang Q, Lu W, Yang K, Hadadi C, Fu X, Chen Y, Yun X, Zhang J, Li M, Xu L, Tang H, Yuan JXJ, Wang J, Sun D. Sodium tanshinone IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-γ signaling axis. Am J Physiol Cell Physiol 2016; 311:C136-49. [PMID: 27194472 PMCID: PMC4967135 DOI: 10.1152/ajpcell.00252.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
Our laboratory previously showed that sodium tanshinone IIA sulfonate (STS) inhibited store-operated Ca(2+) entry (SOCE) through store-operated Ca(2+) channels (SOCC) via downregulating the expression of transient receptor potential canonical proteins (TRPC), which contribute to the formation of SOCC (Wang J, Jiang Q, Wan L, Yang K, Zhang Y, Chen Y, Wang E, Lai N, Zhao L, Jiang H, Sun Y, Zhong N, Ran P, Lu W. Am J Respir Cell Mol Biol 48: 125-134, 2013). The detailed molecular mechanisms by which STS inhibits SOCE and downregulates TRPC, however, remain largely unknown. We have previously shown that, under hypoxic conditions, inhibition of protein kinase G (PKG) and peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling axis results in the upregulation of TRPC (Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhang Y, Zhong N, Ran P, Lu W. Am J Respir Cell Mol Biol 49: 231-240, 2013). This suggests that strategies targeting the restoration of this signaling pathway may be an effective treatment strategy for pulmonary hypertension. In this study, our results demonstrated that STS treatment can effectively prevent the hypoxia-mediated inhibition of the PKG-PPAR-γ signaling axis in rat distal pulmonary arterial smooth muscle cells (PASMCs) and distal pulmonary arteries. These effects of STS treatment were blocked by pharmacological inhibition or specific small interfering RNA knockdown of either PKG or PPAR-γ. Moreover, targeted PPAR-γ agonist markedly enhanced the beneficial effects of STS. These results comprehensively suggest that STS treatment can prevent hypoxia-mediated increases in intracellular calcium homeostasis and cell proliferation, by targeting and restoring the hypoxia-inhibited PKG-PPAR-γ signaling pathway in PASMCs.
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cyrus Hadadi
- Department of Cardiology, Geisinger Medical Center, Danville, Pennsylvania
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Yun
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meichan Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Xu
- Department of Respiratory Diseases, The Affiliated Hospital of Inner Mongolia Medical University Hohhot, Inner Mongolia, China; and
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, Arizona; Division of Pulmonary Medicine, The People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia, China;
| | - Dejun Sun
- Division of Pulmonary Medicine, The People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia, China
| |
Collapse
|