1
|
Tang W, Wang Z, Yuan X, Chen L, Guo H, Qi Z, Zhang Y, Xie X. DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure. Front Cardiovasc Med 2025; 11:1442238. [PMID: 39844908 PMCID: PMC11752391 DOI: 10.3389/fcvm.2024.1442238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Heart failure (HF) has a very high prevalence in patients with maintenance hemodialysis (MHD). However, there is still a lack of effective and reliable HF diagnostic markers and therapeutic targets for patients with MHD. Methods In this study, we analyzed transcriptome profiles of 30 patients with MHD by high-throughput sequencing. Firstly, the differential genes between HF group and control group of patients with MHD were screened. Secondly, HF-related genes were screened by WGCNA, and finally the genes intersecting the two were selected as candidate genes. Machine learning was used to identify hub gene and construct a nomogram model, which was verified by ROC curve and RT-qPCR. In addition, we further explored potential mechanism and function of hub genes in HF of patients with MHD through GSEA, immune cell infiltration analysis, drug analysis and establishment of molecular regulatory network. Results Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. Through GSEA analysis, it was found that the four genes were closely related to ribosome, cell cycle, ubiquitin-mediated proteolysis. We constructed a ceRNA regulatory network, and found that 4 hub genes (TYMS, CDCA2 and DEPDC1B) might be regulated by 4 miRNAs (hsa-miR-1297, hsa-miR-4465, hsa-miR-27a-3p, hsa-miR-129-5p) and 21 lncRNAs (such as HCP5, CAS5, MEG3, HCG18). 24 small molecule drugs were predicted based on TYMS through DrugBank website. Finally, qRT-PCR experiments showed that the expression trend of biomarkers was consistent with the results of transcriptome sequencing. Discussion Overall, our results reveal the molecular mechanism of HF in patients with MHD and provide insights into potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Wenwu Tang
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
- Department of Nephrology, Guangyuan Central Hospital, Guangyuan, China
| | - Zhixin Wang
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| | - Xinzhu Yuan
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| | - Liping Chen
- Psychiatry Major, North Sichuan Medical College, Nanchong, China
| | - Haiyang Guo
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhirui Qi
- College of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Ying Zhang
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| | - Xisheng Xie
- Department of Nephrology, Nanchong Central Hospital Affiliated to North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Yu Y, Zhang ZX, Yin SF, Wu SL, Liu ZJ. Trends in cardiovascular and cerebrovascular health scores in the Kailuan population from 2006 to 2011. World J Cardiol 2024; 16:731-739. [PMID: 39734815 PMCID: PMC11669971 DOI: 10.4330/wjc.v16.i12.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The American Heart Association defines cardiovascular health in terms of four behaviors (smoking, diet, physical activity, and body weight) and three factors (plasma glucose, cholesterol, and blood pressure). By this definition, the prevalence of ideal cardiovascular health behaviors and factors (ICHBF) is negatively correlated with all-cause mortality and risks of cardiovascular and cerebrovascular diseases and malignancy. AIM To investigate the changing trends of cardiovascular and cerebrovascular health scores in the Kailuan study population from 2006 to 2011. METHODS The Kailuan population data from three health checkups held in 2006-2007, 2008-2009, and 2010-2011 were analyzed, and the constituent ratios of cardiovascular and cerebrovascular health behaviors and factors at ideal, intermediate, and poor levels were calculated by using Huffman and Capewell method. Simultaneously, the cardiovascular and cerebrovascular health behavior and factor scores were calculated. RESULTS From 2006 to 2007, the proportion of people with ideal physical exercise, low salt diet, ideal body mass index, ideal total cholesterol level, no smoking, ideal blood sugar, and ideal blood pressure was 13.12%, 9.34%, 49.17%, 64.20%, 49.27%, 69.99%, and 20.55%, respectively, in men with a health score of 8.46, and 12.00%, 9.13%, 61.60%, 64.28%, 98.19%, 78.90% and 36.92% in women, with a score of 10.02. From 2008 to 2009, the proportion was 16.09%, 14.04%, 51.94%, 65.02%, 40.18%, 66.44%, and 17.04% in men, with a score of 8.18, and 16.860%, 17.360%, 64.010%, 67.433%, 98.220%, 76.370%, and 42.340% in women, with a score of 10.12. From 2010 to 2011, the proportion was 12.22%, 17.65%, 49.40%, 68.33%, 48.17%, 64.67%, and 14.68% in males, having a score of 8.21, while in females, the proportion was 11.83%, 18.09%, 49.40%, 67.85%, 98.82%, 74.52%, and 37.78%, with a score of 9.90. CONCLUSION The prevalence of ideal cardiovascular and cerebrovascular health behaviors and factors is low in the Kailuan study population due to inadequate scores of relevant health metrics.
Collapse
Affiliation(s)
- Yao Yu
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Zhao-Xu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Su-Feng Yin
- Department of Preventive Medicine, School of Public Health, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Shou-Ling Wu
- Department of Cardiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Zun-Jing Liu
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
3
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med 2023; 10:1200341. [PMID: 37600028 PMCID: PMC10434786 DOI: 10.3389/fcvm.2023.1200341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis and its complications are a major cause of morbidity and mortality worldwide in spite of the improved medical and invasive treatment in terms of revascularization. Atherosclerosis is a dynamic, multi-step process in which inflammation is a ubiquitous component participating in the initiation, development, and entanglements of the atherosclerotic plaque. After activation, the immune system, either native or acquired, is part of the atherosclerotic dynamics enhancing the pro-atherogenic function of immune or non-immune cells, such as endothelial cells, smooth muscle cells, or platelets, through mediators such as cytokines or directly by cell-to-cell interaction. Cytokines are molecules secreted by the activated cells mentioned above that mediate the inflammatory component of atherosclerosis whose function is to stimulate the immune cells and the production of further cytokines. This review provides insights of the cell axis activation and specific mechanisms and pathways through which inflammation actuates atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital, Bucharest, Romania
| | - Corina-Elena Ferdoschi
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
| | | |
Collapse
|
5
|
Parvan R, Hosseinpour M, Moradi Y, Devaux Y, Cataliotti A, da Silva GJJ. Diagnostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 2022; 24:2212-2225. [PMID: 36161443 PMCID: PMC10092442 DOI: 10.1002/ejhf.2700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
AIM Chronic heart failure (CHF) can be classified as heart failure with preserved ejection fraction (HFpEF) or with reduced ejection fraction (HFrEF). Currently, there is an unmet need for a minimally invasive diagnostic tool for different forms of CHF. We aimed to investigate the diagnostic potential of circulating microRNAs (miRNAs) for the detection of different CHF forms via a systematic review and meta-analysis approach. METHODS AND RESULTS Comprehensive search on Medline, Web of Science, Scopus, and EMBASE identified 45 relevant studies which were used for qualitative assessment. Out of these, 29 studies were used for qualitative and quantitative assessment and allowed to identify a miRNA panel able to detect HFrEF and HFpEF with areas under the curve (AUC) of 0.86 and 0.79, respectively. A panel of eight miRNAs (hsa-miR-18b-3p, hsa-miR-21-5p, hsa-miR-22-3p, hsa-miR-92b-3p, hsa-miR-129-5p, hsa-miR-320a-5p, hsa-miR-423-5p, and hsa-miR-675-5p) detected HFrEF cases with a sensitivity of 0.85, specificity of 0.88 and AUC of 0.91. A panel of seven miRNAs (hsa-miR-19b-3p, hsa-miR-30c-5p, hsa-miR-206, hsa-miR-221-3p, hsa-miR-328-5p, hsa-miR-375-3p, and hsa-miR-424-5p) identified HFpEF cases with a sensitivity of 0.82 and a specificity of 0.61. CONCLUSIONS Although conventional biomarkers (N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide) presented a better performance in detecting CHF patients, the results presented here pointed towards specific miRNA panels with potential additive values to circulating natriuretic peptides in the diagnosis of different classes of CHF. Equally important, miRNAs alone showed a reasonable capacity for 'ruling out' patients with HFrEF or HFpEF. Additional studies with large populations are required to confirm the diagnostic potential of miRNAs for sub-classes of CHF.
Collapse
Affiliation(s)
- Reza Parvan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Milad Hosseinpour
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo J J da Silva
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Usman M, Sarwar Y, Abbasi R, Ishaq HM, Iftikhar M, Hussain I, Demirdogen RE, Ihsan A. Nanogold morphologies with the same surface chemistry provoke a different innate immune response: An in-vitro and in-vivo study. NANOIMPACT 2022; 28:100419. [PMID: 36038134 DOI: 10.1016/j.impact.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Gold nanomaterials (GNMs) have unique optical properties with less antigenicity, and their physicochemical properties have strong relation with an immunological response at bio-interface including antigenicity. An interpretation of this correlation would significantly impact on the clinical and theranostic applications of GNMs. Herein, we studied the effect of GNMs morphology on the cytotoxicity (in-vitro), innate immune responses, hepatotoxicity, and nephrotoxicity (in-vivo studies) using gold nano-cups (GNCs), porous gold nanospheres (PGNSs) and solid gold nano particles (SGNPs) coated with the same ligand to ensure similar surface chemistry. The cytotoxicity was assessed via sulfo-rhodamine B (SRB) assay, and the cytotoxicity data showed that morphological features at nanoscale dimensions like surface roughness and hollowness etc. have a significant impact on cellular viability. The biochemical and histopathological study of liver and kidney tissues also showed that all GNMs did not show any toxicity even at high concentration (100 μL). The relative quantification of cytokine gene expression of TNF-α, IFN-γ, IL-4, 1L-6, and 1L-17 (against each morphology) was checked after in-vivo activation in mice. Among the different nanogold morphologies, PVP stabilized GNCs (PVP-GNCs) showed the highest release of pro-inflammatory cytokines, which might be due to their high surface energy and large surface area for exposure as compared to other nanogold morphologies studied. The pro-inflammatory cytokine release could be suppressed by coating with some anti-inflammatory polymer, i.e., inulin. The in-vitro results of pro-inflammatory (TNF-α, IL-1) cytokines also suggested that all GNMs may induce activation of macrophages and Th1 immune response. The in-vivo activation results showed a decrease in mRNA expression of the cytokines (TNF-α, IFN-γ, IL-4, 1L-6 and 1L-17). Based on these findings, we proposed that the shape and morphology of GNMs control their immune response at nano-bio interface, and it must be considered while designing their role for different biomedical applications like immuno-stimulation and bio-imaging.
Collapse
Affiliation(s)
- Muhammad Usman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan; Department of Biochemistry and Biotechnology, Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Yasra Sarwar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, G-9/1, Islamabad, Pakistan
| | - Hafiz Muhammad Ishaq
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Ruken Esra Demirdogen
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı 18100, Turkey
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan.
| |
Collapse
|
8
|
Saucedo-Orozco H, Vargas-Barron J, Márquez-Velazco R, Farjat-Pasos JI, Martinez-Zavala KS, Jiménez-Rojas V, Criales-Vera SA, Arias-Godínez JA, Fuentevilla-Alvarez G, Guarner-Lans V, Perez-Torres I, Melendez-Ramirez G, Sanchez Perez TE, Soto ME. Bioprosthesis in aortic valve replacement: long-term inflammatory response and functionality. Open Heart 2022; 9:openhrt-2022-002065. [PMID: 35926961 PMCID: PMC9358956 DOI: 10.1136/openhrt-2022-002065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background The evaluation of long-term inflammatory response and function in postoperative patients with aortic valve replacement (AVR) deserves special analysis because it is important to try to prevent reoperation and improve durability and functionality of the prostheses. It is our objective Methods In this study, we included a cohort of patients with aortic valve damage treated by AVR with mechanical prosthesis, bio prosthesis and we included a control group. Results We found that IL-4 and osteopontin levels were higher in patients with mechanical vs biological prostheses (p=0.01 and p=0.04, respectively), osteoprotegerin (OPG) levels were decreased (p=0.01), women had lower levels of ET-1 and IL-6, (p=0.02) (p=0.04), respectively. Patients older than 60 years had decreased levels of IL-1ß p<0.001) and a higher concentration of IL-4 p<0.05). IL-1ß, OPG and TNFα were higher in patients with less than 5 years of evolution vs more than 10 years (p=0.004, p=0.02 and p=0.03, respectively). Factors such as age, gender, prosthetic and elevated IL-1B and ET-1 levels are associated with valve dysfunction prosthetic. These results indicate that the inflammatory involvement present prior to valve replacement may be perpetuated by various factors in the long term. Conclusions The findings provide us with the opportunity to effectively treat patients with AVR in the postoperative period, which could prolong the functionality of the bio prostheses. Trial registration number NCT04557345.
Collapse
Affiliation(s)
- Huitzilihuitl Saucedo-Orozco
- Cardioneumology, Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de Mexico, Mexico.,Speciality Hospital, National Medical Center "La Raza", Cardioneumology, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Jesus Vargas-Barron
- Pharmacology, Instituto Nacional de Cardiologia Ignacio Chavez, CDMX, Mexico
| | - Ricardo Márquez-Velazco
- Department of Immunology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Julio Iván Farjat-Pasos
- Interventional Cardiology, Instituto Nacional de Cardiologia Ignacio Chavez, Tlalpan, Mexico
| | | | | | | | | | | | | | - Israel Perez-Torres
- Cardiovascular Biomedicine, Instituto Nacional de Cardiologia Ignacio Chavez, CDMX, Mexico
| | | | | | - Maria Elena Soto
- Immunology, Instituto Nacional de Cardiologia Ignacio Chavez, CDMX, Mexico .,Cardiovascular Line, Hospital ABC, Mexico City, Mexico
| |
Collapse
|
9
|
Brown AK, Nichols A, Coley CA, Ekperikpe US, McPherson KC, Shields CA, Poudel B, Cornelius DC, Williams JM. Treatment With Lisinopril Prevents the Early Progression of Glomerular Injury in Obese Dahl Salt-Sensitive Rats Independent of Lowering Arterial Pressure. Front Physiol 2021; 12:765305. [PMID: 34975523 PMCID: PMC8719629 DOI: 10.3389/fphys.2021.765305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently, we reported that obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats develop glomerular injury and progressive proteinuria prior to puberty. Moreover, this early progression of proteinuria was associated with elevations in GFR. Therefore, the current study examined whether treatment with lisinopril to reduce GFR slows the early progression of proteinuria in SSLepRmutant rats prior to puberty. Experiments were performed on 4-week-old SS and SSLepRmutant rats that were either treated with vehicle or lisinopril (20 mg/kg/day, drinking water) for 4 weeks. We did not observe any differences in MAP between SS and SSLepRmutant rats treated with vehicle (148 ± 5 vs. 163 ± 6 mmHg, respectively). Interestingly, chronic treatment with lisinopril markedly reduced MAP in SS rats (111 ± 3 mmHg) but had no effect on MAP in SSLepRmutant rats (155 ± 4 mmHg). Treatment with lisinopril significantly reduced proteinuria in SS and SSLepRmutant rats compared to their vehicle counterparts (19 ± 5 and 258 ± 34 vs. 71 ± 12 and 498 ± 66 mg/day, respectively). Additionally, nephrin excretion was significantly elevated in SSLepRmutant rats versus SS rats, and lisinopril reduced nephrin excretion in both strains. GFR was significantly elevated in SSLepRmutant rats compared to SS rats, and lisinopril treatment reduced GFR in SSLepRmutant rats by 30%. The kidneys from SSLepRmutant rats displayed glomerular injury with increased mesangial expansion and renal inflammation versus SS rats. Chronic treatment with lisinopril significantly decreased glomerular injury and renal inflammation in the SSLepRmutant rats. Overall, these data indicate that inhibiting renal hyperfiltration associated with obesity is beneficial in slowing the early development of glomerular injury and renal inflammation.
Collapse
Affiliation(s)
- Andrea K. Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alyssa Nichols
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chantell A. Coley
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ubong S. Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kasi C. McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Corbin A. Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Denise C. Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jan M. Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
10
|
Li J, Shangguan H, Chen X, Ye X, Zhong B, Chen P, Wang Y, Xin B, Bi Y, Zhu D. Advanced glycation end product levels were correlated with inflammation and carotid atherosclerosis in type 2 diabetes patients. Open Life Sci 2020; 15:364-372. [PMID: 33817224 PMCID: PMC7874589 DOI: 10.1515/biol-2020-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus with atherosclerosis (AS) adds to the social burden. This study aimed to investigate whether advanced glycation end product (AGE) levels were correlated with inflammation and carotid AS (CAS) in type 2 diabetes mellitus (T2DM) patients. A total of 50 elderly T2DM patients and 50 age-matched senior healthy subjects were recruited in this study. T2DM patients were classified into two groups based on the intima–media thickness (IMT) of the carotid artery from color Doppler ultrasonography. Patients with IMT > 1 mm were classified into the T2DM + CAS group (n = 28), and patients with IMT < 1 mm were assigned as the T2DM + non-atherosclerosis (NAS) group (n = 22). The plasma levels of AGEs, receptor for AGE (RAGE), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) of all subjects were measured by enzyme-linked immunosorbent assay. The T-lymphocyte subsets were analyzed by a flow detector. T2DM + CAS patients showed significantly higher concentrations of AGEs, RAGE, TNF-α, and IFN-γ in the peripheral blood. The highest levels of CD4+ T cells were observed in the T2DM + CAS group. The AGE level was positively correlated with the concentrations of RAGE, TNF-α, IFN-γ, and CD4+. In summary, the results showed that the levels of AGEs may be correlated with the inflammatory status in T2DM patients with CAS.
Collapse
Affiliation(s)
- Jie Li
- Department of Endocrinology, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China.,Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Haiyan Shangguan
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Xiaoqian Chen
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Xiao Ye
- Department of Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou 310000, China.,Department of Endocrinology, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Bin Zhong
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Pen Chen
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Yamei Wang
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Bin Xin
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210008, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China.,Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China.,Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| |
Collapse
|