1
|
Duchatsch F, Miotto DS, Tardelli LP, Dionísio TJ, Campos DS, Santos CF, Okoshi K, Amaral SL. Blockade of Inflammatory Markers Attenuates Cardiac Remodeling and Fibrosis in Rats with Supravalvular Aortic Stenosis. Biomedicines 2023; 11:3219. [PMID: 38137440 PMCID: PMC10740498 DOI: 10.3390/biomedicines11123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Since cardiac inflammation has been considered an important mechanism involved in heart failure, an anti-inflammatory treatment could control cardiac inflammation and mitigate the worsening of cardiac remodeling. This study evaluated the effects of dexamethasone (DEX) and ramipril treatment on inflammation and cardiac fibrosis in an experimental model of heart failure induced by supravalvular aortic stenosis. Wistar rats (21d) were submitted to an aortic stenosis (AS) protocol. After 21 weeks, an echocardiogram and a maximal exercise test were performed, and after 24 weeks, rats were treated with DEX, ramipril or saline for 14d. The left ventricle (LV) was removed for histological and inflammatory marker analyses. The AS group showed exercise intolerance (-32% vs. Sham), higher relative wall thickness (+63%), collagen deposition and capillary rarefaction, followed by cardiac disfunction. Both treatments were effective in reducing cardiac inflammation, but only DEX attenuated the increased relative wall thickness (-17%) and only ramipril reduced LV fibrosis. In conclusion, both DEX and ramipril decreased cardiac inflammatory markers, which probably contributed to the reduced cardiac fibrosis and relative wall thickness; however, treated AS rats did not show any improvement in cardiac function. Despite the complex pharmacological treatment of heart failure, treatment with an anti-inflammatory could delay the patient's poor prognosis.
Collapse
Affiliation(s)
- Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
| | - Danyelle S. Miotto
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
| | - Lidieli P. Tardelli
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
| | - Thiago J. Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, USP—University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9–75, Bauru 17012-901, SP, Brazil; (T.J.D.); (C.F.S.)
| | - Dijon S. Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu 18618-687, SP, Brazil; (D.S.C.); (K.O.)
| | - Carlos F. Santos
- Department of Biological Sciences, Bauru School of Dentistry, USP—University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9–75, Bauru 17012-901, SP, Brazil; (T.J.D.); (C.F.S.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu 18618-687, SP, Brazil; (D.S.C.); (K.O.)
| | - Sandra L. Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos 13565-905, SP, Brazil; (F.D.); (D.S.M.); (L.P.T.)
- Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01—Vargem Limpa, Bauru 17033-360, SP, Brazil
| |
Collapse
|
2
|
Macedo AG, Miotto DS, Tardelli LP, Santos CF, Amaral SL. Exercise-induced angiogenesis is attenuated by captopril but maintained under perindopril treatment in hypertensive rats. Front Physiol 2023; 14:1147525. [PMID: 37284543 PMCID: PMC10239938 DOI: 10.3389/fphys.2023.1147525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Angiogenesis is an important exercise-induced response to improve blood flow and decrease vascular resistance in spontaneously hypertensive rats (SHR), but some antihypertensive drugs attenuate this effect. This study compared the effects of captopril and perindopril on exercise-induced cardiac and skeletal muscle angiogenesis. Forty-eight Wistar rats and 48 SHR underwent 60 days of aerobic training or were kept sedentary. During the last 45 days, rats were treated with captopril, perindopril or water (Control). Blood pressure (BP) measurements were taken and histological samples from the tibialis anterior (TA) and left ventricle (LV) muscles were analyzed for capillary density (CD) and vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2) and endothelial nitric oxide synthase (eNOS) protein level. Exercise increased vessel density in Wistar rats due to higher VEGFR-2 (+17%) and eNOS (+31%) protein level. Captopril and perindopril attenuated exercise-induced angiogenesis in Wistar rats, but the attenuation was small in the perindopril group, and this response was mediated by higher eNOS levels in the Per group compared to the Cap group. Exercise increased myocardial CD in Wistar rats in all groups and treatment did not attenuate it. Both exercise and pharmacological treatment reduced BP of SHR similarly. Rarefaction was found in TA of SHR compared to Wistar, due to lower levels of VEGF (-26%) and eNOS (-27%) and treatment did not avoid this response. Exercise prevented these reductions in control SHR. While rats treated with perindopril showed angiogenesis in the TA muscle after training, those rats treated with captopril showed attenuated angiogenesis (-18%). This response was also mediated by lower eNOS levels in Cap group compared with Per and control group. Myocardial CD was reduced in all sedentary hypertensive compared with Wistar and training restored the number of vessels compared with sedentary SHR. In conclusion, taken into account only the aspect of vessel growth, since both pharmacological treatments reduced BP in SHR, the result of the present study suggests that perindopril could be a drug of choice over captopril for hypertensive practitioners of aerobic physical exercises, especially considering that it does not attenuate angiogenesis induced by aerobic physical training in skeletal and cardiac muscles.
Collapse
Affiliation(s)
- Anderson G. Macedo
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| | - Danyelle S. Miotto
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| | - Lidieli P. Tardelli
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| | - Carlos F. Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| |
Collapse
|
3
|
Teles MC, Oliveira Portes AM, Campos Coelho BI, Resende LT, Isoldi MC. Cardiac changes in spontaneously hypertensive rats: Modulation by aerobic exercise. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:109-124. [PMID: 36347337 DOI: 10.1016/j.pbiomolbio.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Systemic arterial hypertension is a multifactorial clinical condition characterized by high and sustained levels of blood pressure. For a better understanding of the pathophysiology of hypertension, studies are conducted with spontaneously hypertensive animals, which allow the investigation of physiological changes that in most cases cannot be studied in humans. In these animals, myocardial remodeling, increased pro-inflammatory markers, redox imbalance and contractile dysfunctions that lead to changes in cardiac function can be observed. However, it can be inferring that aerobic training improves cardiac function and cardiomyocyte contractility, in addition to controlling inflammation and reducing oxidative stress in cardiac muscle, despite this, the precise mechanisms by which physical exercise improves cardiovascular control are not fully understood. In this review, we provide an overview of the pathophysiological changes that affect the heart of spontaneously hypertensive animals and their modulation by aerobic exercise.
Collapse
Affiliation(s)
- Maria Cecília Teles
- Laboratory of Cell Signaling, Department Pharmacy, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil.
| | | | - Bianca Iara Campos Coelho
- Laboratory of Cell Signaling, Department Nutrition, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| | - Letícia Teresinha Resende
- Laboratory of Cell Signaling, Department of General Biology, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| | - Mauro Cesar Isoldi
- Laboratory of Cell Signaling, Department of General Biology, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| |
Collapse
|
4
|
Tardelli LP, Duchatsch F, Herrera NA, Ruiz TFR, Pagan LU, Vicentini CA, Okoshi K, Amaral SL. Benefits of combined exercise training on arterial stiffness and blood pressure in spontaneously hypertensive rats treated or not with dexamethasone. Front Physiol 2022; 13:916179. [PMID: 36045742 PMCID: PMC9420846 DOI: 10.3389/fphys.2022.916179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dexamethasone (DEX)-induced arterial stiffness is an important side-effect, associated with hypertension and future cardiovascular events, which can be counteracted by exercise training. The aim of this study was to evaluate the mechanisms induced by combined training to attenuate arterial stiffness and hypertension in spontaneously hypertensive rats treated or not with dexamethasone. Spontaneously hypertensive rats (SHR) underwent combined training for 74 days and were treated with dexamethasone (50 µg/kg s. c.) or saline solution during the last 14 days. Wistar rats were used as controls. Echocardiographic parameters, blood pressure (BP) and pulse wave velocity (PWV), as well as histological analyses of the heart and aorta, carotid and femoral arteries were performed. At the beginning, SHR had higher BP and PWV compared with Wistar rats. After 60 days, while BP increased in sedentary SHR, combined exercise training decreased BP and PWV. After 74d, the higher BP and PWV of sedentary SHR was accompanied by autonomic imbalance to the heart, cardiac remodeling, and higher arterial collagen deposition. DEX treatment did not change these parameters. On the other hand, trained SHR had reduced BP and PWV, which was associated with better autonomic balance to the heart, reduced myocardial collagen deposition, as well as lower arterial collagen deposition. The results of this study suggest that combined training, through the reduction of aortic collagen deposition, is an important strategy to reduce arterial stiffness in spontaneously hypertensive rats, and these lower responses were maintained regardless of dexamethasone treatment.
Collapse
Affiliation(s)
- Lidieli P. Tardelli
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Naiara A. Herrera
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Thalles Fernando R. Ruiz
- Joint Graduate Program in Animal Biology, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Luana U. Pagan
- Department of Internal Medicine, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Carlos A. Vicentini
- Department of Biological Sciences, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Sandra L. Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
- *Correspondence: Sandra L. Amaral,
| |
Collapse
|