1
|
Devlin A, Mycroft-West C, Procter P, Cooper L, Guimond S, Lima M, Yates E, Skidmore M. Tools for the Quality Control of Pharmaceutical Heparin. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E636. [PMID: 31557911 PMCID: PMC6843833 DOI: 10.3390/medicina55100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022]
Abstract
Heparin is a vital pharmaceutical anticoagulant drug and remains one of the few naturally sourced pharmaceutical agents used clinically. Heparin possesses a structural order with up to four levels of complexity. These levels are subject to change based on the animal or even tissue sources that they are extracted from, while higher levels are believed to be entirely dynamic and a product of their surrounding environments, including bound proteins and associated cations. In 2008, heparin sources were subject to a major contamination with a deadly compound-an over-sulphated chondroitin sulphate polysaccharide-that resulted in excess of 100 deaths within North America alone. In consideration of this, an arsenal of methods to screen for heparin contamination have been applied, based primarily on the detection of over-sulphated chondroitin sulphate. The targeted nature of these screening methods, for this specific contaminant, may leave contamination by other entities poorly protected against, but novel approaches, including library-based chemometric analysis in concert with a variety of spectroscopic methods, could be of great importance in combating future, potential threats.
Collapse
Affiliation(s)
- Anthony Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Courtney Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Lynsay Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Scott Guimond
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Marcelo Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Edwin Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Mark Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
2
|
Crude Heparin Preparations Unveil the Presence of Structurally Diverse Oversulfated Contaminants. Molecules 2019; 24:molecules24162988. [PMID: 31426507 PMCID: PMC6721129 DOI: 10.3390/molecules24162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
Nowadays, pharmaceutical heparin is purified from porcine and bovine intestinal mucosa. In the past decade there has been an ongoing concern about the safety of heparin, since in 2008, adverse effects associated with the presence of an oversulfated chondroitin sulfate (OSCS) were observed in preparations of pharmaceutical porcine heparin, which led to the death of patients, causing a global public health crisis. However, it has not been clarified whether OSCS has been added to the purified heparin preparation, or whether it has already been introduced during the production of the raw heparin. Using a combination of different analytical methods, we investigate both crude and final heparin products and we are able to demonstrate that the sulfated contaminants are intentionally introduced in the initial steps of heparin preparation. Furthermore, the results show that the oversulfated compounds are not structurally homogeneous. In addition, we show that these contaminants are able to bind to cells in using well known heparin binding sites. Together, the data highlights the importance of heparin quality control even at the initial stages of its production.
Collapse
|
3
|
Surveying silicon nitride nanopores for glycomics and heparin quality assurance. Nat Commun 2018; 9:3278. [PMID: 30115917 PMCID: PMC6095881 DOI: 10.1038/s41467-018-05751-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/17/2018] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides have key biological functions and can be harnessed for therapeutic roles, such as the anticoagulant heparin. Their complexity—e.g., >100 monosaccharides with variety in linkage and branching structure—significantly complicates analysis compared to other biopolymers such as DNA and proteins. More, and improved, analysis tools have been called for, and here we demonstrate that solid-state silicon nitride nanopore sensors and tuned sensing conditions can be used to reliably detect native polysaccharides and enzymatic digestion products, differentiate between different polysaccharides in straightforward assays, provide new experimental insights into nanopore electrokinetics, and uncover polysaccharide properties. We show that nanopore sensing allows us to easily differentiate between a clinical heparin sample and one spiked with the contaminant that caused deaths in 2008 when its presence went undetected by conventional assays. The work reported here lays a foundation to further explore polysaccharide characterization and develop assays using thin-film solid-state nanopore sensors. The complexity of polysaccharides significantly complicates their analysis in comparison to other biopolymers. Here, the authors demonstrate that solid-state silicon nitride nanopore sensors can be used to reliably detect native polysaccharides and to perform a simple quality assurance assay on a polysaccharide therapeutic, heparin.
Collapse
|
4
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
5
|
Ingle RG, Agarwal AS. A world of low molecular weight heparins (LMWHs) enoxaparin as a promising moiety—A review. Carbohydr Polym 2014; 106:148-53. [DOI: 10.1016/j.carbpol.2014.01.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 12/23/2022]
|
6
|
Chess EK, Bairstow S, Donovan S, Havel K, Hu P, Johnson RJ, Lee S, McKee J, Miller R, Moore E, Nordhaus M, Ray J, Szabo C, Wielgos T. Case study: contamination of heparin with oversulfated chondroitin sulfate. Handb Exp Pharmacol 2012:99-125. [PMID: 22566223 DOI: 10.1007/978-3-642-23056-1_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
In late 2007 and early 2008, a cluster of adverse events in patients receiving Heparin Sodium Injection occurred in the United States and in some countries in Europe. The adverse events were reported as being "allergic type" reactions, chiefly characterized by acute hypotension, nausea, and shortness of breath. The root cause of the cluster of adverse events was determined to be a contamination of the heparin by oversulfated chondroitin sulfate. The isolation and structure determination of this contaminant was accomplished by an FDA-led consortium of academic and government laboratories and independently by Baxter Healthcare, whose vial products were first identified in the USA as being associated with the adverse events. Oversulfated chondroitin sulfate was shown to produce acute hypotension in animal models, demonstrating that it was most likely the causative agent responsible for certain of the reported adverse events in patients receiving the contaminated heparin products.
Collapse
|
7
|
Gray A, Litinas E, Jeske W, Fareed J, Hoppensteadt D. Interactions of oversulfated chondroitin sulfate (OSCS) from different sources with unfractionated heparin. Clin Appl Thromb Hemost 2012; 18:166-73. [PMID: 22311630 DOI: 10.1177/1076029611421167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In 2008, oversulfated chondroitin sulfate (OSCS) was identified as the main contaminant in recalled heparin. Oversulfated chondroitin sulfate can be prepared from bovine (B), porcine (P), shark (Sh), or skate (S) origin and may produce changes in the antithrombotic, bleeding, and hemodynamic profile of heparins. This study examines the interactions of various OSCSs on heparin in animal models of thrombosis and bleeding, as well as on the anticoagulant and antiprotease effects in in vitro assays. Mixtures of 70% unfractionated heparin (UFH) with 30% OSCS from different sources were tested. In the in vitro activated partial thromboplastin time (aPTT) assay, all contaminant mixtures showed a decrease in clotting times. In addition, a significant increase in bleeding time compared to the control (UFH/saline) was observed. In the thrombosis model, no significant differences were observed. The OSCSs significantly increased anti-Xa activity in ex vivo blood samples. These results indicate that various sources of OSCS affect the hemostatic properties of heparin.
Collapse
Affiliation(s)
- Angel Gray
- Department of Pharmacology, Loyola University Chicago, IL, USA
| | | | | | | | | |
Collapse
|
8
|
Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination. Anal Chem 2011; 83:7815-22. [PMID: 21863856 DOI: 10.1021/ac201498a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparin and the low molecular weight heparins are extensively used as medicinal products to prevent and treat the formation of venous and arterial thrombi. In early 2008, administration of some heparin lots was associated with the advent of severe adverse effects, indicative of an anaphylactoid-like response. Application of orthogonal analytical tools enabled detection and identification of the contaminant as oversulfated chondroitin sulfate (OSCS) was reported in our earlier report. Herein, we investigate whether enzymatic depolymerization using the bacterially derived heparinases, given the structural understanding of their substrate specificity, can be used to identify the presence of OSCS in heparin. We also extend this analysis to examine the effect of other persulfonated glycosaminoglycans (GAGs) on the action of the heparinases. We find that all persulfonated GAGs examined were effective inhibitors of heparinase I, with IC(50) values ranging from approximately 0.5-2 μg/mL. Finally, using this biochemical understanding, we develop a rapid, simple assay to assess the purity of heparin using heparinase digestion followed by size-exclusion HPLC analysis to identify and quantify digestion products. In the context of the assay, we demonstrate that less than 0.1% (w/w) of OSCS (and other persulfonated polysaccharides) can routinely be detected in heparin.
Collapse
Affiliation(s)
- Udayanath Aich
- Harvard-MIT Division of Health Sciences and Technology, the Koch Institute for Integrative, Cancer Research and the Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
9
|
Sassaki GL, Riter DS, Santana Filho AP, Guerrini M, Lima MA, Cosentino C, Souza LM, Cipriani TR, Rudd TR, Nader HB, Yates EA, Gorin PAJ, Torri G, Iacomini M. A robust method to quantify low molecular weight contaminants in heparin: detection of tris(2-n-butoxyethyl) phosphate. Analyst 2011; 136:2330-8. [PMID: 21494716 DOI: 10.1039/c0an01010c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, oversulfated chondroitin sulfate (OSCS) was identified in contaminated heparin preparations, which were linked to several adverse clinical events and deaths. Orthogonal analytical techniques, namely nuclear magnetic resonance (NMR) and capillary electrophoresis (CE), have since been applied by several authors for the evaluation of heparin purity and safety. NMR identification and quantification of residual solvents and non-volatile low molecular contaminants with USP acceptance levels of toxicity was achieved 40-fold faster than the traditional GC-headspace technique, which takes ~120 min against ~3 min to obtain a (1)H NMR spectrum with a signal/noise ratio of at least 1000/1. The procedure allowed detection of Class 1 residual solvents at 2 ppm and quantification was possible above 10 ppm. 2D NMR techniques (edited-HSQC (1)H/(13)C) permitted visualization of otherwise masked EDTA signals at 3.68/59.7 ppm and 3.34/53.5 ppm, which may be overlapping mononuclear heparin signals, or those of ethanol and methanol. Detailed NMR and ESI-MS/MS studies revealed a hitherto unknown contaminant, tris(2-n-butoxyethyl) phosphate (TBEP), which has potential health risks.
Collapse
Affiliation(s)
- Guilherme L Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR CEP: 81531-980, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lima MA, Rudd TR, de Farias EHC, Ebner LF, Gesteira TF, de Souza LM, Mendes A, Córdula CR, Martins JRM, Hoppensteadt D, Fareed J, Sassaki GL, Yates EA, Tersariol ILS, Nader HB. A new approach for heparin standardization: combination of scanning UV spectroscopy, nuclear magnetic resonance and principal component analysis. PLoS One 2011; 6:e15970. [PMID: 21267460 PMCID: PMC3022730 DOI: 10.1371/journal.pone.0015970] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/01/2010] [Indexed: 11/30/2022] Open
Abstract
The year 2007 was marked by widespread adverse clinical responses to heparin use, leading to a global recall of potentially affected heparin batches in 2008. Several analytical methods have since been developed to detect impurities in heparin preparations; however, many are costly and dependent on instrumentation with only limited accessibility. A method based on a simple UV-scanning assay, combined with principal component analysis (PCA), was developed to detect impurities, such as glycosaminoglycans, other complex polysaccharides and aromatic compounds, in heparin preparations. Results were confirmed by NMR spectroscopy. This approach provides an additional, sensitive tool to determine heparin purity and safety, even when NMR spectroscopy failed, requiring only standard laboratory equipment and computing facilities.
Collapse
Affiliation(s)
- Marcelo A. Lima
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Timothy R. Rudd
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eduardo H. C. de Farias
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lyvia F. Ebner
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis F. Gesteira
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lauro M. de Souza
- Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Aline Mendes
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina R. Córdula
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João R. M. Martins
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debra Hoppensteadt
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, United States of America
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, United States of America
| | - Guilherme L. Sassaki
- Laboratório de Química de Carboidratos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Edwin A. Yates
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ivarne L. S. Tersariol
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena B. Nader
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Rudd TR, Gaudesi D, Skidmore MA, Ferro M, Guerrini M, Mulloy B, Torri G, Yates EA. Construction and use of a library of bona fide heparins employing 1H NMR and multivariate analysis. Analyst 2011; 136:1380-9. [DOI: 10.1039/c0an00834f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Kalodiki E, Fareed J. New and Generic Anticoagulants and Biosimilars: Safety Considerations. Clin Appl Thromb Hemost 2010; 17:136-9. [DOI: 10.1177/1076029610387128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The recent health care changes and approval of a generic low-molecular-weight heparin (LMWH) by the US Food and Drug Administration (FDA) merit a review of the facts regarding the new and generic anticoagulants. Fatal hypotension from anaphylactoid type reactions following heparin administration was responsible for more than 149 deaths all over the world. Researchers detected a heparin-like semisynthetic contaminant, over-sulfated chondroitin sulfate (OSCS), that appeared to be intentional. Low-molecular-weight heparins are produced using unfractionated heparin and OSCS has been found in various batches of LMWHs. Some newer anticoagulants are claiming to be free from the need to monitor for therapeutic effect and bleeding risk. Therefore, monitoring assays are not being developed and there is no antidote to reverse bleeding. In addition, there are concerns about reproducibility, product variation, and quality. In conclusion, although the generic LMWHs and newer anticoagulants may appear to be effective for qualified indications, their safety remains to be a concern.
Collapse
Affiliation(s)
- Evi Kalodiki
- Vascular Surgery Department, Ealing Hospital and Imperial College London, SW7 2AZ, UK, Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Centre, Maywood, IL, USA,
| | - Jawed Fareed
- Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Centre, Maywood, IL, USA
| |
Collapse
|
13
|
NMR of heparin API: investigation of unidentified signals in the USP-specified range of 2.12–3.00 ppm. Anal Bioanal Chem 2010; 399:651-62. [DOI: 10.1007/s00216-010-4262-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022]
|
14
|
New developments in quantitative polymerase chain reaction applied to control the quality of heparins. Anal Bioanal Chem 2010; 399:747-55. [PMID: 20931175 DOI: 10.1007/s00216-010-4232-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Heparin is a widely used intravenous anticoagulant comprised of a very complex mixture of glucosaminoglycan chains, mainly derived from porcine intestinal mucosa. Recent contamination of heparin with oversulfated (OS) chondroitin sulfate resulted in a significant number of deaths, triggering a rapid revision of product monographs and the introduction of new analytical methods to limit as far as possible the chances of another occurrence of such a phenomenon. The distribution of heparin-processing units across the globe prevents their complete fool-proof auditing. Therefore, the implementation of additional orthogonal analytical techniques for quality control (QC) of heparin batches is highly important. We perform routine quantitative polymerase chain reaction (Q-PCR) release tests to confirm the quality of all crude heparin batches received by sanofi-aventis. The routine test used provides information on the animal species of origin as requested by the US Pharmacopoeia (USP) and European Pharmacopoiea monographs. Here, we demonstrate that the Q-PCR test is inhibited by OS glycosaminoglycans at concentrations as low as 0.5% (w/w versus heparin) and can be used as an additional safeguard to monitor levels of potentially harmful contaminants without any increased workload. In response to a request from the USP, we also describe the development of a Q-PCR method for monitoring nucleotidic impurities in pure heparin, which is able to detect amplifiable DNA at concentrations lower than 0.1 ng DNA per milligram of heparin. This increased sensitivity makes this modified Q-PCR method a potential candidate for inclusion as a QC requirement in future monographs.
Collapse
|
15
|
Beni S, Limtiaco JFK, Larive CK. Analysis and characterization of heparin impurities. Anal Bioanal Chem 2010; 399:527-39. [PMID: 20814668 PMCID: PMC3015169 DOI: 10.1007/s00216-010-4121-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations. Schematic illustrating the process for heparin impurity characterization ![]()
Collapse
Affiliation(s)
- Szabolcs Beni
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
16
|
Lühn S, Schiemann S, Alban S. Simple fluorescence assay for quantification of OSCS in heparin. Anal Bioanal Chem 2010; 399:673-80. [DOI: 10.1007/s00216-010-3867-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/12/2010] [Accepted: 05/20/2010] [Indexed: 11/30/2022]
|
17
|
Pan J, Qian Y, Zhou X, Pazandak A, Frazier SB, Weiser P, Lu H, Zhang L. Reply to Oversulfated chondroitin sulfate is not the sole contaminant in heparin. Nat Biotechnol 2010. [DOI: 10.1038/nbt0310-207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Orthogonal analytical approaches to detect potential contaminants in heparin. Proc Natl Acad Sci U S A 2009; 106:16956-61. [PMID: 19805108 DOI: 10.1073/pnas.0906861106] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heparin is a widely used anticoagulant and antithrombotic agent. Recently, a contaminant, oversulfated chondroitin sulfate (OSCS), was discovered within heparin preparations. The presence of OSCS within heparin likely led to clinical manifestations, most prevalently, hypotension and abdominal pain leading to the deaths of several dozens of patients. Given the biological effects of OSCS, one continuing item of concern is the ability for existing methods to identify other persulfonated polysaccharide compounds that would also have anticoagulant activity and would likely elicit a similar activation of the contact system. To complete a more extensive analysis of the ability for NMR and capillary electrophoresis (CE) to capture a broader array of potential contaminants within heparin, we completed a systematic study of NMR, both mono- and bidimensional, and CE to detect both various components of sidestream heparin and their persulfonated derivatives. We show that given the complexity of heparin samples, and the requirement to ensure their purity and safety, use of orthogonal analytical techniques is effective at detecting an array of potential contaminants that could be present.
Collapse
|