1
|
Carpanese D, Rossi V, Di Paolo V, Quintieri L, Penna A, Zuccolotto G, Sebellin J, Saran C, Pipitone F, Miolo G, De Diana E, Realdon N, Rigamonti N, Di Sarra F, Coppola M, Rosato A. Prolonging the stability of cetuximab (Erbitux®) and panitumumab (Vectibix®): An orthogonal assessment of physicochemical, biological and microbiological properties of original opened glass vials and diluted saline preparations. Int J Pharm 2024; 649:123643. [PMID: 38040395 DOI: 10.1016/j.ijpharm.2023.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
The two anti-epidermal growth factor receptor monoclonal antibodies (mAbs) cetuximab and panitumumab are the pillars for the treatment of EGFR-positive, KRAS wild-type metastatic colorectal cancers. However, stability data of these mAbs are generally missing or incomplete. Here, we report for the first time an orthogonal analysis of the stability of cetuximab (Erbitux®) and panitumumab (Vectibix®), either undiluted vial leftovers or saline dilutions in polyolefin/polyamide infusion bags. All samples were stored at 2-8 °C protected from light, according to their summary of product characteristics (SmPCs). Alternatively, opened vials and preparations were maintained at 25 °C for 15 h, and then stored again at 2-8 °C protected from light to mimic a temporary interruption of the cold chain. Vial leftovers proved stable up to 180 days when stored according to their SmPCs, while compounded preparations in infusion bags maintained their physiochemical, biological and microbiological stability up to 30 days. Additionally, no changes were detected up to 30 days for the same samples undergoing a thermal excursion. Our results provide additional rationale to the SmPCs, crucial especially in the case of reassignment and pre-preparation of bags. This information will allow hospitals to achieve significant cost savings, and better organization of the entire therapeutic process.
Collapse
Affiliation(s)
- Debora Carpanese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valentina Rossi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | - Veronica Di Paolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Alessandro Penna
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Jessica Sebellin
- Pharmacy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Camilla Saran
- Pharmacy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Elisabetta De Diana
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | | | - Marina Coppola
- Pharmacy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Vieillard V, Le Guyader G, Jallades A, Astier A. Extended physicochemical stability of cetuximab in opened vials and infusion bags when stored at 4°C and 25°C. J Oncol Pharm Pract 2024; 30:142-150. [PMID: 37078110 PMCID: PMC10804814 DOI: 10.1177/10781552231170583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION This study aimed to determine the stability of cetuximab: (1) under "in-use" conditions after dilution to 1 mg/mL in 0.9% sodium chloride in polyolefin bags and (2) as an undiluted solution (5 mg/mL) repackaged in polypropylene bags or kept in the vial after opening. METHODS Ready-to-use 500 mg/100 mL vials of cetuximab solution were diluted to 1 mg/mL in 100 mL bags of 0.9% sodium chloride or repackaged as a 5 mg/mL solution into empty 100 mL bags. Bags and vials were stored at 4°C for 90 days and 25°C for 3 days. A syringe sample of 7 mL was taken from each bag for the initial determinations. The sampled bags were weighed to determine their initial weight and placed under the planned storage conditions. The physicochemical stability of cetuximab was estimated using validated methods. RESULTS No changes in turbidity, no protein loss, and no changes in cetuximab tertiary structure were observed after 30 days of storage or when subjected to a temperature excursion of 3 days at 25°C and when stored at 4°C for up to 90 days, regardless of the concentrations and batches. The colligative parameters did not change under any of the tested conditions. No evidence of microbial growth was found in bags after 90 days of storage at 4°C. CONCLUSION These results support the extended in-use shelf-life of cetuximab vials and bags, which can be cost-effective for healthcare providers.
Collapse
Affiliation(s)
- Victoire Vieillard
- Department of Pharmacy, AP-HP, Hôpitaux Universitaires Henri-Mondor, Créteil, France
| | - Guillaume Le Guyader
- Department of Pharmacy, AP-HP, Hôpitaux Universitaires Henri-Mondor, Créteil, France
| | - Alice Jallades
- Merck Santé S.A.S., Lyon, France, an affiliate of Merck KGaA
| | - Alain Astier
- Department of Pharmacy, AP-HP, Hôpitaux Universitaires Henri-Mondor, Créteil, France
- Academie Nationale de Pharmacie, Paris, France
| |
Collapse
|
3
|
Weiser S, Burns C, Zartler ER. Physicochemical stability of PF-05280014 (trastuzumab-qyyp; TrazimeraTM), a trastuzumab biosimilar, under extended in-use conditions. J Oncol Pharm Pract 2022; 29:590-600. [PMID: 35072574 DOI: 10.1177/10781552221074649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction The stability and functional activity of the trastuzumab biosimilar PF-05280014 (trastuzumab-qyyp; TrazimeraTM), was assessed under extended in-use conditions. Methods PF-05280014 was diluted in 0.9% sodium chloride to final concentrations of 0.2 mg/mL and 4 mg/mL in 3 different types of infusion bags (polyolefin, ethylene vinyl acetate, and polyvinyl chloride). Infusion bags containing diluted PF-05280014 were stored at 25 ± 5° C for 24 h, before storage at 5 ± 3° C for 0, 1, 2, 4, or 6 weeks. Following extended storage, samples of PF-05280014 were removed from the infusion bags and stored at 25 ± 5° C for 24 h before biophysical and functional characterization. In addition to the visual characteristics of each sample at the various time points, the stability of PF-05280014 was assessed using a variety of biophysical techniques, including size-exclusion high-performance liquid chromatography, non-reducing sodium dodecyl sulfate capillary electrophoresis, cation-exchange chromatography, peptide mapping, far-UV circular dichroism spectroscopy, and differential scanning calorimetry. The functional activity of PF-05280014 was evaluated using a cell-based growth inhibition assay. Results For all PF-05280014 concentrations, time points and infusion bags tested, there were no significant differences in visual characteristics or in protein concentration. The were no significant changes in the relative abundance of molecular weight or charge variants throughout the 6-week study period. Similarly, there were no significant changes in primary structure or in secondary structure content during the study. The relative potency of PF-05280014 was also maintained throughout the 6-week period. Conclusions The stability and functional activity of PF-05280014 was maintained following dilution in 0.9% sodium chloride and storage for up to 6 weeks at 2–8° C.
Collapse
Affiliation(s)
- Sarah Weiser
- Pharmaceutical Research and Development, Pfizer Inc., 1 Burtt Rd, Andover, MA, USA
| | - Christopher Burns
- Pharmaceutical Research and Development, Pfizer Inc., 1 Burtt Rd, Andover, MA, USA
| | - Edward R. Zartler
- Biosimilars Pharmaceutical Sciences, Pfizer Inc., 275 N Field Dr, Lake Forest, IL, USA
| |
Collapse
|