Li H, Luo Z, Peng M, Guo L, Li F, Feng W, Cui Y. Doxorubicin Loaded Dextran-coated Superparamagnetic Iron Oxide Nanoparticles with Sustained Release Property: Intracellular Uptake, Pharmacokinetics, and Biodistribution Study.
Curr Pharm Biotechnol 2021;
23:978-987. [PMID:
34097591 DOI:
10.2174/1389201022666210604153738]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND
Due to the short biological half-life and serious side effects (especially for heart and kidney), the application of Doxorubicin (Dox) in clinical therapy is strictly limited. To overcome these shortcomings, a novel sustained release formulation of doxorubicin-loaded dextran-coated superparamagnetic iron oxide nanoparticles (Dox-DSPIONs) was prepared.
OBJECTIVE
The purpose of this study was to evaluate the intracellular uptake behavior of Dox-DSPIONs and to investigate their pharmacokinetics and biodistribution properties.
METHOD
Confocal laser scanning microscopy was employed to study the intracellular uptake and release properties of Dox from Dox-DSPIONs in SMMC-7721 cells. Simple high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was established to study the pharmacokinetics and biodistribution properties of Dox-DSPIONs in vivo after intravenous administration and compared with free Dox.
RESULTS
Intracellular uptake experiment indicated that Dox could be released sustainedly from Dox-DSPIONs over time. The pharmacokinetics parameters displayed that the T1/2and AUC0-24h of Dox-DSPIONs were higher than those of free Dox, while the Cmax of Dox-DSPIONs was significantly lower than that of free drug. The biodistribution behaviors of the drug were altered by Dox-DSPIONs in mice, which showed obvious liver targeting, and significantly reduced the distribution of the drug in the heart and kidney.
CONCLUSION
Dox-DSPIONs have the sustained-release property in vitro and in vivo, which could significantly prolong blood circulation time, improve bioavailability, and reduce the side effects of Dox. Therefore, the novel formulation of the Dox-DSPIONs has the potential as a promising drug delivery system in cancer therapy.
Collapse