Zhao E, Wang D, Jing L, Zhao Z, Huang S, Xie L, Hu S, Liang H, Chen Y. MicroRNA-124a regulates the differentiation of bone marrow mesenchymal stem cells into neurons.
J Recept Signal Transduct Res 2023;
43:154-159. [PMID:
38226608 DOI:
10.1080/10799893.2024.2303014]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE
This study investigated the effects of microRNA-124a on the differentiation of bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanism.
METHODS
Flow cytometry was used for isolation and identification of BMSCs. Real-time polymerase chain reaction (RT-PCR) was used to detect gene mRNA expression. Apoptosis was detected using Annexin V-FITC/PI Apoptosis Detection Kit. Cell proliferation ability was tested using Cell Counting Kit-8 (CCK-8). The differentiation of BMSCs into neuron inducers β-thiol ethanol or baicalin formed the basis of the study.
RESULTS
β-thiol ethanol markedly suppressed the microRNA-124a expression of BMSCs, baicalin markedly induced the microRNA-124a expression of BMSCs and β-thiol ethanol or baicalin promoted apoptosis and reduced the growth of BMSCs. Only the microRNA-124a inhibitor did not affect apoptosis or the differentiation of BMSCs, and it increased the effects of β-thiol ethanol or baicalin on the apoptosis of BMSCs.
CONCLUSION
β-thiol ethanol and baicalin treatment could affect microRNA-124a expression in BMSCs. We demonstrated that microRNA-124a promoted the differentiation of BMSCs into neurons.
Collapse