1
|
Development of an active packaging with an oxygen scavenger and moisture adsorbent for fresh lulo (Solanum quitoense). J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Samkumpim T, Alahmad W, Tabani H, Varanusupakul P, Kraiya C. Application of oxygen scavengers in gel electromembrane extraction: A green methodology for simultaneous determination of nitrate and nitrite in sausage samples. Food Chem 2023; 422:136190. [PMID: 37137238 DOI: 10.1016/j.foodchem.2023.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
The generation of oxygen from electrolysis in gel electromembrane extraction (G-EME) causes a negative error when applied to the analysis of easily oxidized species such as nitrite. Nitrite in G-EME is oxidized by oxygen to nitrate, leading to the negative error and the impossibility of simultaneous analysis. In this work, the application of oxygen scavengers to the acceptor phase of the G-EME system was attempted to minimize the oxidation effect. Several oxygen scavengers were selected and examined according to their compatibility with ion chromatography. The mixture of sulfite and bisulfite (14 mg L-1) showed the highest efficiency in preventing the oxidation of nitrite to nitrate. Under the optimized conditions, a good linear range was obtained (10-200 μg L-1; R2 > 0.998) with a detection limit of 8 µg L-1 for both nitrite and nitrate. This method was applied to the simultaneous determination of nitrite and nitrate in sausage samples.
Collapse
Affiliation(s)
- Thidarat Samkumpim
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Charoenkwan Kraiya
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Pant AF, Dorn J, Reinelt M. Effect of Temperature and Relative Humidity on the Reaction Kinetics of an Oxygen Scavenger Based on Gallic Acid. Front Chem 2018; 6:587. [PMID: 30538982 PMCID: PMC6277677 DOI: 10.3389/fchem.2018.00587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Gallic acid (GA) is a potential oxygen scavenger for food packaging applications. In this study we investigated the effect of temperature and relative humidity (RH) on the reaction kinetics of an oxygen scavenger consisting of GA and sodium carbonate. The reaction was described by a second-order kinetic law and the reaction rate coefficient k as well as the scavenger capacity n were determined from experimental data using a multiple-run downhill simplex method. Both the rate coefficient and the scavenger capacity increased significantly with higher temperatures. At 21°C it was shown that both the rate coefficient and the scavenger capacity increased significantly with higher RH. However, below 54% RH, there was no detectable reaction. For optimum scavenger performance we therefore recommend GA-based scavengers for packaging of food products with a high water activity stored at room temperature. Prior to application, the packaging materials with GA-based scavengers can be stored at 21°C and 54% RH without losing their scavenger activity. The results of this study provide the basis for the functional design of active packaging systems with GA-based oxygen scavengers.
Collapse
Affiliation(s)
- Astrid F Pant
- TUM School of Life Sciences Weihenstephan, Chair of Food Packaging Technology, Technical University of Munich, Freising, Germany.,Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Julia Dorn
- TUM School of Life Sciences Weihenstephan, Chair of Food Packaging Technology, Technical University of Munich, Freising, Germany.,Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Matthias Reinelt
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
4
|
Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V. Active Packaging Applications for Food. Compr Rev Food Sci Food Saf 2017; 17:165-199. [PMID: 33350066 DOI: 10.1111/1541-4337.12322] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/29/2017] [Indexed: 01/21/2023]
Abstract
The traditional role of food packaging is continuing to evolve in response to changing market needs. Current drivers such as consumer's demand for safer, "healthier," and higher-quality foods, ideally with a long shelf-life; the demand for convenient and transparent packaging, and the preference for more sustainable packaging materials, have led to the development of new packaging technologies, such as active packaging (AP). As defined in the European regulation (EC) No 450/2009, AP systems are designed to "deliberately incorporate components that would release or absorb substances into or from the packaged food or the environment surrounding the food." Active packaging materials are thereby "intended to extend the shelf-life or to maintain or improve the condition of packaged food." Although extensive research on AP technologies is being undertaken, many of these technologies have not yet been implemented successfully in commercial food packaging systems. Broad communication of their benefits in food product applications will facilitate the successful development and market introduction. In this review, an overview of AP technologies, such as antimicrobial, antioxidant or carbon dioxide-releasing systems, and systems absorbing oxygen, moisture or ethylene, is provided, and, in particular, scientific publications illustrating the benefits of such technologies for specific food products are reviewed. Furthermore, the challenges in applying such AP technologies to food systems and the anticipated direction of future developments are discussed. This review will provide food and packaging scientists with a thorough understanding of the benefits of AP technologies when applied to specific foods and hence can assist in accelerating commercial adoption.
Collapse
Affiliation(s)
- Selçuk Yildirim
- Inst. of Food and Beverage Innovation, Dept. of Life Sciences and Facility Management, Zurich Univ. of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Bettina Röcker
- Inst. of Food and Beverage Innovation, Dept. of Life Sciences and Facility Management, Zurich Univ. of Applied Sciences, 8820 Wädenswil, Switzerland
| | | | - Julie Nilsen-Nygaard
- Nofima - Norwegian Inst. of Food, Fisheries and Aquaculture Research, 1430 Aas, Norway
| | - Zehra Ayhan
- Faculty of Engineering, Dept. of Food Engineering, Sakarya Univ., Serdivan, Sakarya, Turkey
| | - Ramune Rutkaite
- Faculty of Chemical Technology, Dept. of Polymer Chemistry and Technology, Kaunas Univ. of Technology, 50254 Kaunas, Lithuania
| | - Tanja Radusin
- Inst. of Food Technology, Univ. of Novi Sad, 21000 Novi Sad, Serbia
| | - Patrycja Suminska
- Faculty of Food Sciences and Fisheries, Center of Bioimmobilization and Innovative Packaging Materials, West Pomeranian Univ. of Technology, 71-270 Szczecin, Poland
| | - Begonya Marcos
- IRTA, Food Technology, Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Véronique Coma
- UMR CNRS 5629, LCPO, Bordeaux Univ., 33607 PESSAC cedex, France
| |
Collapse
|
5
|
Pant AF, Sängerlaub S, Müller K. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films. MATERIALS 2017; 10:ma10050489. [PMID: 28772849 PMCID: PMC5458987 DOI: 10.3390/ma10050489] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
Abstract
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86).
Collapse
Affiliation(s)
- Astrid F Pant
- Chair of Food Packaging Technology, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany.
| | - Sven Sängerlaub
- Chair of Food Packaging Technology, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany.
| | - Kajetan Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany.
- Faculty of Mechanical Engineering, University of Applied Sciences, Bahnhofstraße 61, 87435 Kempten, Germany.
| |
Collapse
|
6
|
Nanoscale, zero valent iron particles for application as oxygen scavenger in food packaging. Food Packag Shelf Life 2017. [DOI: 10.1016/j.fpsl.2017.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Effect of storage conditions on the absorption kinetics of non-metallic oxygen scavenger suitable for moist food packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9470-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Khalaj MJ, Ahmadi H, Lesankhosh R, Khalaj G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Lehner M, Schlemmer D, Sängerlaub S. Recycling of blends made of polypropylene and an iron-based oxygen scavenger – Influence of multiple extrusions on the polymer stability and the oxygen absorption capacity. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Feng S, Luo Z, Shao S, Wu B, Ying T. Effect of relative humidity and temperature on absorption kinetics of two types of oxygen scavengers for packaged food. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Simin Feng
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou; 310058; China
| | - Zisheng Luo
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou; 310058; China
| | - Shiqi Shao
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou; 310058; China
| | - Binbin Wu
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou; 310058; China
| | - Tiejin Ying
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou; 310058; China
| |
Collapse
|
11
|
Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2011.10.001] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Miranda G, Berna A, Bon J, Mulet A. Modeling of the process of moisture loss during the storage of dried apricots. FOOD SCI TECHNOL INT 2011; 17:439-47. [PMID: 21954317 DOI: 10.1177/1082013211398810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Moisture content is a reference parameter for dried food because the growth of most microorganisms is inhibited below certain water activity levels. In addition, it has a determining influence on the evolution of important parameters, such as color and flavor, and on other properties and deterioration reactions, such as texture, oxidation processes and nutritional value. During the storage of some dried fruits, moisture is produced due to Maillard reactions and exchanged with the surrounding environment through the packaging. The evolution of dried foods during their shelf life depends on the storage conditions. The aim of this study is to analyze the evolution of the moisture content in dried apricots packaged in different types of containers, namely glass and thermosealed polypropylene trays. The samples were stored at constant temperatures: 5, 15, 25 and 35 °C and were analyzed periodically over a period of 12 months. The sorption isotherms of apricots used in this study were also determined. In order to model how the moisture evolved, an empirical kinetic model was tested. This model considers both water transfer from the fruit and also water production as a result of the Maillard processes. The explained variance was higher than 95% in the samples stored in trays, which were thermosealed with film.
Collapse
Affiliation(s)
- G Miranda
- Chemical Engineering Department, University of València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | | | | | | |
Collapse
|
13
|
|
14
|
Laksmana F, Kok PH, Frijlink H, Vromans H, Van Der Voort Maarschalk K. Gas permeation related to the moisture sorption in films of glassy hydrophilic polymers. J Appl Polym Sci 2010. [DOI: 10.1002/app.31854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|